首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.  相似文献   

3.
4.
5.
6.
MicroRNAs in mammalian development   总被引:1,自引:0,他引:1  
  相似文献   

7.
microRNAs(miRNAs)是一类具有组织或发育阶段特异性的小分子、非编码单链RNA,通过转录后与靶基因特定序列结合来发挥其调控作用. 作为骨中的最重要的两种重要细胞--成骨细胞和破骨细胞,其代谢平衡与骨形成密切相关.研究发现,miRNAs在调节成骨细胞和破骨细胞分化及功能发挥上具有重要作用,并且运动训练可通过调节miRNAs进而调控骨细胞分化. 一般来说,适宜强度运动训练可上调某些miRNAs表达来促进成骨细胞或破骨细胞分化及功能;当失重或过量运动时,则会产生抑制作用. 本文就miRNAs调控干细胞向成骨细胞和破骨细胞分化及功能发挥的分子生物学机制以及运动训练调节与骨代谢相关miRNAs表达的研究进展进行综述.  相似文献   

8.
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding small RNAs that are evolutionarily conserved and widely distributed among species. Their major function is to negatively regulate target gene expression. A single miRNA can regulate multiple target genes, indicating that miRNAs may regulate multiple signaling pathways and participate in a variety of physiological and pathological processes. Currently, approximately 50% of identified human miRNA-coding genes are located at tumor-related fragile chromosome regions. Abnormal miRNA expression and/or mutations have been found in almost all types of malignancies. These abnormally expressed miRNAs play roles similar to tumor suppressor genes or oncogenes by regulating the expression and/or function of tumor-related genes. Therefore, miRNAs, miRNA target genes, and the genes regulating miRNAs form a regulatory network with miRNAs in the hub. This network plays a pivotal role in tumorigenesis and tumor development.  相似文献   

9.
MicroRNAs (miRNAs) represent an abundant class of endogenously expressed small RNAs, which is believed to control the expression of proteins through specific interaction with their mRNAs. MiRNAs are non-coding RNAs of 18 to 24 nucleotides that negatively regulate target mRNAs by binding to their 3'-untranslated regions (UTR). Most eukaryotic cells utilize miRNA to regulate vital functions such as cell differentiation, proliferation or apopotosis. The diversity of miRNAs and of their mRNA targets strongly indicate that they play a key role in the regulation of protein expression. To date, more than 500 different miRNAs have been identified in animals and plants. There are at least 326 miRNAs in the human genome, comprising 1-4% of all expressed human genes, which makes miRNAs one of the largest classes of gene regulators. A single miRNA can bind to and regulate many different mRNA targets and, conversely, several different miRNAs can bind to and cooperatively control a single mRNA target. The correlation between the expression of miRNAs and their effects on tumorigenesis and on the proliferation of cancer cells is beginning to gain experimental evidences. Recent studies showed that abnormal expression of miRNAs represents a common feature of cancer cells and that they can function as tumor suppressor genes or as oncogenes. Therefore, this diversity of action for miRNAs on several target genes could be one of the common mechanisms involved in the deregulation of protein expression observed during intestinal disorders. In this review, the emergent functions of miRNAs in colorectal cancer and their potential role in the intestinal inflammatory process are discussed.  相似文献   

10.
11.
12.
MicroRNA function in animal development   总被引:28,自引:0,他引:28  
Wienholds E  Plasterk RH 《FEBS letters》2005,579(26):5911-5922
  相似文献   

13.
The purpose of this study was to describe the microRNA (miRNA) expression profiles of neutrophils and their precursors from the initiation of granulopoiesis in the bone marrow to extravasation and accumulation in skin windows. We analyzed three different cell populations from human bone marrow, polymorphonuclear neutrophil (PMNs) from peripheral blood, and extravasated PMNs from skin windows using the Affymetrix 2.0 platform. Our data reveal 135 miRNAs differentially regulated during bone marrow granulopoiesis. The majority is differentially regulated between the myeloblast/promyelocyte (MB/PM) and myelocyte/metamyelocyte (MC/MM) stages of development. These 135 miRNAs were divided into six clusters according to the pattern of their expression. Several miRNAs demonstrate a pronounced increase or reduction at the transition between MB/PM and MC/MM, which is associated with cell cycle arrest and the initiation of terminal differentiation. Seven miRNAs are differentially up-regulated between peripheral blood PMNs and extravasated PMNs and only one of these (miR-132) is also differentially regulated during granulopoiesis. The study indicates that several different miRNAs participate in the regulation of normal granulopoiesis and that miRNAs might also regulate activities of extravasated neutrophils. The data present the miRNA profiles during the development and activation of the neutrophil granulocyte in healthy humans and thus serves as a reference for further research of normal and malignant granulocytic development.  相似文献   

14.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

15.
16.
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.  相似文献   

17.
18.
MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes in higher eukaryotes.  相似文献   

19.
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3’-untranslated region of multiple target genes. Pathogenesis results from defects in several gene sets; therefore, disease progression could be prevented using miRNAs targeting multiple genes. Moreover, recent studies suggest that miRNAs reflect the stage of the specific disease, such as carcinogenesis. Cystic diseases, including polycystic kidney disease, polycystic liver disease, pancreatic cystic disease, and ovarian cystic disease, have common processes of cyst formation in the specific organ. Specifically, epithelial cells initiate abnormal cell proliferation and apoptosis as a result of alterations to key genes. Cysts are caused by fluid accumulation in the lumen. However, the molecular mechanisms underlying cyst formation and progression remain unclear. This review aims to introduce the key miRNAs related to cyst formation, and we suggest that miRNAs could be useful biomarkers and potential therapeutic targets in several cystic diseases. [BMB Reports 2013; 46(7):338-345]  相似文献   

20.
microPrimer: the biogenesis and function of microRNA   总被引:42,自引:0,他引:42  
Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号