首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
复杂刺激的知觉学习是指由训练或经验引起的对物体或者面孔等复杂视觉刺激在知觉上长期稳定的改变,一般认为这反映了大脑高级视皮层的可塑性.对简单刺激知觉学习特性的研究已经揭示了低级视皮层的部分可塑性,但是复杂刺激知觉学习的神经机制目前仍存在争议.本文介绍了知觉学习的理论模型和实验证据,并重点探讨了复杂刺激如物体和面孔知觉学习的特性、神经机制及研究方法.该领域未来需要在复杂刺激知觉学习的持久性、面孔不同属性知觉学习的机制,以及复杂刺激知觉学习的理论模型方面做进一步研究.  相似文献   

2.
Stimulus timing-dependent plasticity in cortical processing of orientation.   总被引:4,自引:0,他引:4  
H Yao  Y Dan 《Neuron》2001,32(2):315-323
The relative timing of presynaptic and postsynaptic spikes plays a critical role in activity-induced synaptic modification. Here we examined whether plasticity of orientation selectivity in the visual cortex depends on stimulus timing. Repetitive pairing of visual stimuli at two orientations induced a shift in orientation tuning of cat cortical neurons, with the direction of the shift depending on the temporal order of the pair. Induction of a significant shift required that the interval between the pair fall within +/-40 ms, reminiscent of the temporal window for spike timing-dependent synaptic plasticity. Mirroring the plasticity found in cat visual cortex, similar conditioning also induced a shift in perceived orientation by human subjects, further suggesting functional relevance of this phenomenon. Thus, relative timing of visual stimuli can play a critical role in dynamic modulation of adult cortical function, perhaps through spike timing-dependent synaptic plasticity.  相似文献   

3.
Spike timing-dependent plasticity of neural circuits   总被引:12,自引:0,他引:12  
Dan Y  Poo MM 《Neuron》2004,44(1):23-30
Recent findings of spike timing-dependent plasticity (STDP) have stimulated much interest among experimentalists and theorists. Beyond the traditional correlation-based Hebbian plasticity, STDP opens up new avenues for understanding information coding and circuit plasticity that depend on the precise timing of neuronal spikes. Here we summarize experimental characterization of STDP at various synapses, the underlying cellular mechanisms, and the associated changes in neuronal excitability and dendritic integration. We also describe STDP in the context of complex spike patterns and its dependence on the dendritic location of the synapse. Finally, we discuss timing-dependent modification of neuronal receptive fields and human visual perception and the computational significance of STDP as a synaptic learning rule.  相似文献   

4.
Meliza CD  Dan Y 《Neuron》2006,49(2):183-189
Experience-dependent plasticity of visual cortical receptive fields (RFs) involves synaptic modifications in the underlying neural circuits, but the site and mechanism of these modifications remain to be elucidated. Using in vivo whole-cell recordings, we show that pairing visual stimulation at a given retinal location with spiking of a single neuron in developing rat visual cortex induces rapid RF modifications. The time course of the response to the visual stimulus at the paired RF location is altered, with an enhancement of the response preceding the spike time and a reduction following the spike. Such bidirectional modification is consistent with spike timing-dependent plasticity. Response modification also occurs at nearby locations, the direction and magnitude of which are correlated with the change at the paired location. In addition, changes at unpaired locations show a negative correlation with the initial strength of the response, which may facilitate rapid modification of the spatial RF profile.  相似文献   

5.
Recent studies show that synaptic modification depends critically on the relative spike timing of pre- and postsynaptic neurons. Here we explore the functional implications of spike timing-dependent synaptic plasticity in the visual cortex using a model circuit with modifiable intracortical excitatory connections. First we simulated the experiments using two-point stimuli, in which two visual stimuli in a topographically represented feature space were repeatedly presented in quick succession, and found that tuning of the cortical neurons was modified in a manner similar to that observed experimentally. We then explored the dependence of results on the model parameter and identified the intracortical parameters that were critical for the magnitude of the shifts and obtained a simple relationship between the amount of shift and (S = (EXTCrec_exc)/INHCrec_inh). Finally we investigated the effects of moving stimuli in a topographically represented visual space and found that they can effectively induce spike timing-dependent modification of the intracortical connections. It suggests the importance of moving stimuli in dynamic modification of the cortical maps through spike timing-dependent synaptic plasticity.  相似文献   

6.
The precise temporal relation between pre- and postsynaptic activity modulates the strength of synaptic connections. Despite its extensive characterization in vivo and in vitro, the degree to which spike timing-dependent plasticity can shape receptive field properties is unclear. We use in vivo patch-clamp recordings of tectal neurons in developing Xenopus tadpoles to control the precise timing of action potentials with respect to the arrival of a subset of visual inputs evoked by local light stimulation on the retina. The pattern of visual inputs onto a tectal neuron was tracked over time by rapid reverse correlation mapping of receptive fields. Spike timing-dependent potentiation or depression of a subset of synapses reliably shifts the spatial receptive fields toward or away from the trained subregion of visual space, respectively. These results demonstrate that natural patterns of activity evoked by sensory stimuli play an instructive role in the developing nervous system.  相似文献   

7.
Mu Y  Poo MM 《Neuron》2006,50(1):115-125
Sensory experience plays an instructive role in the development of the nervous system. Here we showed that visual experience can induce persistent modification of developing retinotectal circuits via spike timing-dependent plasticity (STDP). Pairing light stimuli with spiking of the tectal cell induced persistent enhancement or reduction of light-evoked responses, with a dependence on the relative timing between light stimulus and postsynaptic spiking similar to that for STDP. Using precisely timed sequential three-bar stimulation to mimic a moving bar, we showed that spike timing-dependent LTP/LTD can account for the asymmetric modification of the tectal cell receptive field induced by moving bar. Furthermore, selective inhibition of signaling mediated by brain-derived neurotrophic factor and nitric oxide, which are respectively required for light-induced LTP and LTD, interfered with moving bar-induced temporally specific changes in the tectal cell responses. Together, these findings suggest that STDP can mediate sensory experience-dependent circuit refinement in the developing nervous system.  相似文献   

8.
It is not known whether prolonged exposure to perceived and imagined complex visual images produces similar shifts in subsequent perception through selective adaptation. This question is important because a positive finding would suggest that perception and imagery of visual stimuli are mediated by shared neural networks. In this study, we used a selective adaptation procedure designed to induce high-level face-identity aftereffects--a phenomenon in which extended exposure to a particular face facilitates recognition of subsequent faces with opposite features while impairing recognition of all other faces. We report here that adaptation to either real or imagined faces produces a similar shift in perception and that identity boundaries represented in real and imagined faces are equivalent. Together, our results show that identity information contained in imagined and real faces produce similar behavioral outcomes. Our findings of high-level visual aftereffects induced by imagined stimuli can be taken as evidence for the involvement of shared neural networks that mediate perception and imagery of complex visual stimuli.  相似文献   

9.
Detecting the temporal relationship among events in the environment is a fundamental goal of the brain. Following pulses of rhythmic stimuli, neurons of the retina and cortex produce activity that closely approximates the timing of an omitted pulse. This omitted stimulus response (OSR) is generally interpreted as a transient response to rhythmic input and is thought to form a basis of short-term perceptual memories. Despite its ubiquity across species and experimental protocols, the mechanisms underlying OSRs remain poorly understood. In particular, the highly transient nature of OSRs, typically limited to a single cycle after stimulation, cannot be explained by a simple mechanism that would remain locked to the frequency of stimulation. Here, we describe a set of realistic simulations that capture OSRs over a range of stimulation frequencies matching experimental work. The model does not require an explicit mechanism for learning temporal sequences. Instead, it relies on spike timing-dependent plasticity (STDP), a form of synaptic modification that is sensitive to the timing of pre- and post-synaptic action potentials. In the model, the transient nature of OSRs is attributed to the heterogeneous nature of neural properties and connections, creating intricate forms of activity that are continuously changing over time. Combined with STDP, neural heterogeneity enabled OSRs to complex rhythmic patterns as well as OSRs following a delay period. These results link the response of neurons to rhythmic patterns with the capacity of heterogeneous circuits to produce transient and highly flexible forms of neural activity.  相似文献   

10.
Tactile rivalry demonstrated with an ambiguous apparent-motion quartet   总被引:1,自引:0,他引:1  
When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception.  相似文献   

11.
In wave-type weakly electric fish, two distinct types of primary afferent fibers are specialized for separately encoding modulations in the amplitude and phase (timing) of electrosensory stimuli. Time-coding afferents phase lock to periodic stimuli and respond to changes in stimulus phase with shifts in spike timing. Amplitude-coding afferents fire sporadically to periodic stimuli. Their probability of firing in a given cycle, and therefore their firing rate, is proportional to stimulus amplitude. However, the spike times of time-coding afferents are also affected by changes in amplitude; similarly, the firing rates of amplitude-coding afferents are also affected by changes in phase. Because identical changes in the activity of an individual primary afferent can be caused by modulations in either the amplitude or phase of stimuli, there is ambiguity regarding the information content of primary afferent responses that can result in ‘phantom’ modulations not present in an actual stimulus. Central electrosensory neurons in the hindbrain and midbrain respond to these phantom modulations. Phantom modulations can also elicit behavioral responses, indicating that ambiguity in the encoding of amplitude and timing information ultimately distorts electrosensory perception. A lack of independence in the encoding of multiple stimulus attributes can therefore result in perceptual illusions. Similar effects may occur in other sensory systems as well. In particular, the vertebrate auditory system is thought to be phylogenetically related to the electrosensory system and it encodes information about amplitude and timing in similar ways. It has been well established that pitch perception and loudness perception are both affected by the frequency and intensity of sounds, raising the intriguing possibility that auditory perception may also be affected by ambiguity in the encoding of sound amplitude and timing.  相似文献   

12.
How does the brain construct a percept from sensory signals? One approach to this fundamental question is to investigate perceptual learning as induced by exposure to statistical regularities in sensory signals [1-7]. Recent studies showed that exposure to novel correlations between sensory signals can cause a signal to have new perceptual effects [2, 3]. In those studies, however, the signals were clearly visible. The automaticity of the learning was therefore difficult to determine. Here we investigate whether learning of this sort, which causes new effects on appearance, can be low level and automatic by employing a visual signal whose perceptual consequences were made invisible-a vertical disparity gradient masked by other depth cues. This approach excluded high-level influences such as attention or consciousness. Our stimulus for probing perceptual appearance was a rotating cylinder. During exposure, we introduced a new contingency between the invisible signal and the rotation direction of the cylinder. When subsequently presenting an ambiguously rotating version of the cylinder, we found that the invisible signal influenced the perceived rotation direction. This demonstrates that perception can rapidly undergo "structure learning" by automatically picking up novel contingencies between sensory signals, thus automatically recruiting signals for novel uses during the construction of a percept.  相似文献   

13.
With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.  相似文献   

14.
Karmarkar UR  Dan Y 《Neuron》2006,52(4):577-585
Experience-dependent plasticity is a prominent feature of the mammalian visual cortex. Although such neural changes are most evident during development, adult cortical circuits can be modified by a variety of manipulations, such as perceptual learning and visual deprivation. Elucidating the underlying mechanisms at the cellular and synaptic levels is an essential step in understanding neural plasticity in the mature animal. Although developmental and adult plasticity share many common features, notable differences may be attributed to developmental cortical changes at multiple levels. These range from shifts in the molecular profiles of cortical neurons to changes in the spatiotemporal dynamics of network activity. In this review, we will discuss recent progress and remaining challenges in understanding adult visual plasticity, focusing on the primary visual cortex.  相似文献   

15.
G J Stuart 《Neuron》2001,32(6):966-968
Recent studies show that the precise timing of presynaptic inputs and postsynaptic action potentials influences the strength and sign of synaptic plasticity. In this issue of Neuron, Sj?str?m and colleagues (2001) determine how this so-called spike timing-dependent plasticity depends on the frequency and strength of the presynaptic inputs.  相似文献   

16.
Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks.  相似文献   

17.
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer''s discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.  相似文献   

18.
19.
Spike timing dependent plasticity (STDP) is a learning rule that modifies synaptic strength as a function of the relative timing of pre- and postsynaptic spikes. When a neuron is repeatedly presented with similar inputs, STDP is known to have the effect of concentrating high synaptic weights on afferents that systematically fire early, while postsynaptic spike latencies decrease. Here we use this learning rule in an asynchronous feedforward spiking neural network that mimics the ventral visual pathway and shows that when the network is presented with natural images, selectivity to intermediate-complexity visual features emerges. Those features, which correspond to prototypical patterns that are both salient and consistently present in the images, are highly informative and enable robust object recognition, as demonstrated on various classification tasks. Taken together, these results show that temporal codes may be a key to understanding the phenomenal processing speed achieved by the visual system and that STDP can lead to fast and selective responses.  相似文献   

20.
Although spike timing-dependent plasticity has been well-characterized in vitro, it is less clear to what degree spike timing-dependent plasticity contributes to shaping visual system properties in vivo. In this issue of Neuron, two papers by Vislay-Meltzer et al. and Mu and Poo provide evidence that STDP contributes to the effects of sensory stimuli in refinement of the retinotectal system in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号