首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Stimulus timing-dependent plasticity in cortical processing of orientation.   总被引:4,自引:0,他引:4  
H Yao  Y Dan 《Neuron》2001,32(2):315-323
The relative timing of presynaptic and postsynaptic spikes plays a critical role in activity-induced synaptic modification. Here we examined whether plasticity of orientation selectivity in the visual cortex depends on stimulus timing. Repetitive pairing of visual stimuli at two orientations induced a shift in orientation tuning of cat cortical neurons, with the direction of the shift depending on the temporal order of the pair. Induction of a significant shift required that the interval between the pair fall within +/-40 ms, reminiscent of the temporal window for spike timing-dependent synaptic plasticity. Mirroring the plasticity found in cat visual cortex, similar conditioning also induced a shift in perceived orientation by human subjects, further suggesting functional relevance of this phenomenon. Thus, relative timing of visual stimuli can play a critical role in dynamic modulation of adult cortical function, perhaps through spike timing-dependent synaptic plasticity.  相似文献   

2.
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.  相似文献   

3.
Although spike timing-dependent plasticity has been well-characterized in vitro, it is less clear to what degree spike timing-dependent plasticity contributes to shaping visual system properties in vivo. In this issue of Neuron, two papers by Vislay-Meltzer et al. and Mu and Poo provide evidence that STDP contributes to the effects of sensory stimuli in refinement of the retinotectal system in Xenopus.  相似文献   

4.
Spike timing-dependent plasticity of neural circuits   总被引:12,自引:0,他引:12  
Dan Y  Poo MM 《Neuron》2004,44(1):23-30
Recent findings of spike timing-dependent plasticity (STDP) have stimulated much interest among experimentalists and theorists. Beyond the traditional correlation-based Hebbian plasticity, STDP opens up new avenues for understanding information coding and circuit plasticity that depend on the precise timing of neuronal spikes. Here we summarize experimental characterization of STDP at various synapses, the underlying cellular mechanisms, and the associated changes in neuronal excitability and dendritic integration. We also describe STDP in the context of complex spike patterns and its dependence on the dendritic location of the synapse. Finally, we discuss timing-dependent modification of neuronal receptive fields and human visual perception and the computational significance of STDP as a synaptic learning rule.  相似文献   

5.
G J Stuart 《Neuron》2001,32(6):966-968
Recent studies show that the precise timing of presynaptic inputs and postsynaptic action potentials influences the strength and sign of synaptic plasticity. In this issue of Neuron, Sj?str?m and colleagues (2001) determine how this so-called spike timing-dependent plasticity depends on the frequency and strength of the presynaptic inputs.  相似文献   

6.
Dynamics of spike-timing dependent synaptic plasticity are analyzed for excitatory and inhibitory synapses onto cerebellar Purkinje cells. The purpose of this study is to place theoretical constraints on candidate synaptic learning rules that determine the changes in synaptic efficacy due to pairing complex spikes with presynaptic spikes in parallel fibers and inhibitory interneurons. Constraints are derived for the timing between complex spikes and presynaptic spikes, constraints that result from the stability of the learning dynamics of the learning rule. Potential instabilities in the parallel fiber synaptic learning rule are found to be stabilized by synaptic plasticity at inhibitory synapses if the inhibitory learning rules are stable, and conditions for stability of inhibitory plasticity are given. Combining excitatory with inhibitory plasticity provides a mechanism for minimizing the overall synaptic input. Stable learning rules are shown to be able to sculpt simple-spike patterns by regulating the excitability of neurons in the inferior olive that give rise to climbing fibers.  相似文献   

7.
Spike-timing dependent plasticity (STDP), a synaptic modification depending on a relative timing of presynaptic and postsynaptic spikes, has fascinated researchers in the fields of neurophysiology and computational neuroscience, because it is not only conceptually simple or biologically reasonable but is also versatile in neural network simulations. The STDP rule may be valid only under specific conditions, however. We propose herein a method that could find more natural and potent rules of synaptic plasticity.  相似文献   

8.
S Song  L F Abbott 《Neuron》2001,32(2):339-350
Long-term modification of synaptic efficacy can depend on the timing of pre- and postsynaptic action potentials. In model studies, such spike timing-dependent plasticity (STDP) introduces the desirable features of competition among synapses and regulation of postsynaptic firing characteristics. STDP strengthens synapses that receive correlated input, which can lead to the formation of stimulus-selective columns and the development, refinement, and maintenance of selectivity maps in network models. The temporal asymmetry of STDP suppresses strong destabilizing self-excitatory loops and allows a group of neurons that become selective early in development to direct other neurons to become similarly selective. STDP, acting alone without further hypothetical global constraints or additional forms of plasticity, can also reproduce the remapping seen in adult cortex following afferent lesions.  相似文献   

9.
Li CY  Lu JT  Wu CP  Duan SM  Poo MM 《Neuron》2004,41(2):257-268
Correlated pre- and postsynaptic activity that induces long-term potentiation is known to induce a persistent enhancement of the intrinsic excitability of the presynaptic neuron. Here we report that, associated with the induction of long-term depression in hippocampal cultures and in somatosensory cortical slices, there is also a persistent reduction in the excitability of the presynaptic neuron. This reduction requires postsynaptic Ca(2+) elevation and presynaptic PKA- and PKC-dependent modification of slow-inactivating K(+) channels. The bidirectional changes in neuronal excitability and synaptic efficacy exhibit identical requirements for the temporal order of pre- and postsynaptic activation but reflect two distinct aspects of activity-induced modification of neural circuits.  相似文献   

10.
Mu Y  Poo MM 《Neuron》2006,50(1):115-125
Sensory experience plays an instructive role in the development of the nervous system. Here we showed that visual experience can induce persistent modification of developing retinotectal circuits via spike timing-dependent plasticity (STDP). Pairing light stimuli with spiking of the tectal cell induced persistent enhancement or reduction of light-evoked responses, with a dependence on the relative timing between light stimulus and postsynaptic spiking similar to that for STDP. Using precisely timed sequential three-bar stimulation to mimic a moving bar, we showed that spike timing-dependent LTP/LTD can account for the asymmetric modification of the tectal cell receptive field induced by moving bar. Furthermore, selective inhibition of signaling mediated by brain-derived neurotrophic factor and nitric oxide, which are respectively required for light-induced LTP and LTD, interfered with moving bar-induced temporally specific changes in the tectal cell responses. Together, these findings suggest that STDP can mediate sensory experience-dependent circuit refinement in the developing nervous system.  相似文献   

11.
With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.  相似文献   

12.
Ma TF  Zhao XL  Cai L  Zhang N  Ren SQ  Ji F  Tian T  Lu W 《PloS one》2012,7(4):e35001
The recent history of activity input onto granule cells (GCs) in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON) inputs to mitral cells (MCs). Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs) with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP) was achieved by the regulation of the inter-spike-interval (ISI) of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.  相似文献   

13.
Calcium through NMDA receptors (NMDARs) is necessary for the long-term potentiation (LTP) of synaptic strength; however, NMDARs differ in several properties that can influence the amount of calcium influx into the spine. These properties, such as sensitivity to magnesium block and conductance decay kinetics, change the receptor's response to spike timing dependent plasticity (STDP) protocols, and thereby shape synaptic integration and information processing. This study investigates the role of GluN2 subunit differences on spine calcium concentration during several STDP protocols in a model of a striatal medium spiny projection neuron (MSPN). The multi-compartment, multi-channel model exhibits firing frequency, spike width, and latency to first spike similar to current clamp data from mouse dorsal striatum MSPN. We find that NMDAR-mediated calcium is dependent on GluN2 subunit type, action potential timing, duration of somatic depolarization, and number of action potentials. Furthermore, the model demonstrates that in MSPNs, GluN2A and GluN2B control which STDP intervals allow for substantial calcium elevation in spines. The model predicts that blocking GluN2B subunits would modulate the range of intervals that cause long term potentiation. We confirmed this prediction experimentally, demonstrating that blocking GluN2B in the striatum, narrows the range of STDP intervals that cause long term potentiation. This ability of the GluN2 subunit to modulate the shape of the STDP curve could underlie the role that GluN2 subunits play in learning and development.  相似文献   

14.
15.
16.
17.
18.
An experiment was carried out to investigate the role of temperaturein the previously reported reinforcing effect of an increasein sea water level in Aplysia. In the present experiment, itwas found that the reinforcing effect of water level changeon rod-pressing behavior in Aplysia depends on a decrease intemperature associated with water level change. In order studymodification of rod pressing behavior produced by contingentincrease in water level and decrease in temperature, the rateand latency of rod-press responses in experimental animals wherecompared with those of yoked control animals exposed to non-contingentwater level and temperature change. Higher response rates andshorter response latencies were obtained from experimental overyoked control animals but only the shorter latencies of experimentalanimals were attributed to a behavioral change resulting fromcontingent water level and temperature reinforcement.  相似文献   

19.
Bioassay of Floral Stimulus in Xanthium   总被引:1,自引:1,他引:0  
  相似文献   

20.
为了解释动物细胞胞质分裂的力学机理 ,基于大量的细胞卵裂实验数据 ,在Zinemanas和Nir的流体动力学模型基础上 ,对微丝的局部集中函数改为随同质膜移动 ,增加了由于生化刺激引起主动微丝的影响系数。数值计算表明 :此模型能较好的预测细胞在胞质分裂过程中 ,细胞的总体和局部变形 ,以及卵裂沟处的张力和细胞内压。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号