首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inositol (1,4,5)-trisphosphate receptor (InsP3R) mediates Ca2+ release from intracellular stores in response to generation of second messenger InsP3. InsP3R was biochemically purified and cloned, and functional properties of native InsP3-gated Ca2+ channels were extensively studied. However, further studies of InsP3R are obstructed by the lack of a convenient functional assay of expressed InsP3R activity. To establish a functional assay of recombinant InsP3R activity, transient heterologous expression of neuronal rat InsP3R cDNA (InsP3R-I, SI− SII+ splice variant) in HEK-293 cells was combined with the planar lipid bilayer reconstitution experiments. Recombinant InsP3R retained specific InsP3 binding properties (K d = 60 nM InsP3) and were specifically recognized by anti–InsP3R-I rabbit polyclonal antibody. Density of expressed InsP3R-I was at least 20-fold above endogenous InsP3R background and only 2–3-fold lower than InsP3R density in rat cerebellar microsomes. When incorporated into planar lipid bilayers, the recombinant InsP3R formed a functional InsP3-gated Ca2+ channel with 80 pS conductance using 50 mM Ba2+ as a current carrier. Mean open time of recombinant InsP3-gated channels was 3.0 ms; closed dwell time distribution was double exponential and characterized by short (18 ms) and long (130 ms) time constants. Overall, gating and conductance properties of recombinant neuronal rat InsP3R-I were very similar to properties of native rat cerebellar InsP3R recorded in identical experimental conditions. Recombinant InsP3R also retained bell-shaped dependence on cytosolic Ca2+ concentration and allosteric modulation by ATP, similar to native cerebellar InsP3R. The following conclusions are drawn from these results. (a) Rat neuronal InsP3R-I cDNA encodes a protein that is either sufficient to produce InsP3-gated channel with functional properties identical to the properties of native rat cerebellar InsP3R, or it is able to form a functional InsP3-gated channel by forming a complex with proteins endogenously expressed in HEK-293 cells. (b) Successful functional expression of InsP3R in a heterologous expression system provides an opportunity for future detailed structure–function characterization of this vital protein.  相似文献   

2.
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca2+ waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca2+ signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3′-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3–3′UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca2+ signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca2+ signaling and secretion.  相似文献   

3.
4.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is activated by InsP3 binding to amino-terminal ligand binding domain (InsP3R-N). Recently we reported functional coupling of phosphatidylinositol (4,5)-bisphosphate (PIP2) to the InsP3R. Specific binding of PIP2 to InsP3R-N domain was postulated as a part of the InsP3R-PIP2 functional coupling model. Here we utilized bacterially expressed and purified InsP3R-N domain to characterize its binding specificity for InsP3, Adenophostin A (AdA) and the water-soluble PIP2 analog dioctanoyl-(4,5)PIP2 (ShPIP2). Obtained data led us to conclude that specific InsP3, AdA, and ShPIP2 binding sites are located within the InsP3R-N domain, that the extra receptor binding element responsible for enhanced binding of AdA is an integral part of the InsP3R-N domain, that ShPIP2 is able to displace InsP3 from the InsP3R-N, but InsP3 or AdA is unable to completely displace ShPIP2. These results support the InsP3R-PIP2 functional coupling model and provide novel insights into InsP3R ligand specificity.  相似文献   

5.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

6.
Ca2+ release through inositol 1,4,5-trisphosphate receptors (InsP3R) can be modulated by numerous factors, including input from other signal transduction cascades. These events shape the spatio-temporal characteristics of the Ca2+ signal and provide fidelity essential for the appropriate activation of effectors. In this study, we investigate the regulation of Ca2+ release via InsP3R following activation of cyclic nucleotide-dependent kinases in the presence and absence of expression of a binding partner InsP3R-associated cGMP kinase substrate (IRAG). cGMP-dependent kinase (PKG) phosphorylation of only the S2+ InsP3R-1 subtype resulted in enhanced Ca2+ release in the absence of IRAG expression. In contrast, IRAG bound to each InsP3R subtype, and phosphorylation of IRAG by PKG attenuated Ca2+ release through all InsP3R subtypes. Surprisingly, simply the expression of IRAG attenuated phosphorylation and inhibited the enhanced Ca2+ release through InsP3R-1 following cAMP-dependent protein kinase (PKA) activation. In contrast, IRAG expression did not influence the PKA-enhanced activity of the InsP3R-2. Phosphorylation of IRAG resulted in reduced Ca2+ release through all InsP3R subtypes during concurrent activation of PKA and PKG, indicating that IRAG modulation is dominant under these conditions. These studies yield mechanistic insight into how cells with various complements of proteins integrate and prioritize signals from ubiquitous signaling pathways.  相似文献   

7.
RBL-2H3 rat basophilic leukemia cells were homogenized and fractionated. A fraction F3 obtained by differential centrifugation was 6-fold enriched in [3H]-inositol 1,4,5-trisphosphate (InsP3) binding activity, while the NADH-cytochrome c oxidoreductase and sulphatase-C activities were only 3.8- and 2.9-fold enriched, respectively. Furthermore, the three InsP3 receptor (InsP3R) isoforms, two sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) isoforms (2b and 3) as well as four Ca 2+ binding proteins (calreticulin, calnexin, protein disulfide isomerase (PDI) and BiP), were present in this fraction. Fraction F3 was, therefore, further purified on a discontinuous sucrose density gradient, and the 3 resulting fractions were analyzed. The InsP3 binding sites were distributed over the gradient and did not co-migrate with the RNA. We examined the relative content of the three InsP3R isoforms, of both SERCA2b and 3, as well as that of the four Ca 2+ binding proteins in fraction F3 and the sucrose density gradient fractions. Ins P3R-1 and InsP3R-2 showed a similar distribution, with the highest level in the light and intermediate density fractions. InsP3R-3 distributed differently, with the highest level in the intermediate density fraction. Both SERCA isoforms distributed similarly to InsP3R-1 and InsP3R-2. SERCA3 was present at a very low level in the high density fraction. Calreticulin and BiP showed a pattern similar to that of InsP3R-1 and InsP3R-2 and the SERCs. PDI was clearly enriched in the light density fraction while calnexin was broadly distributed. These results indicate a heterogeneous distribution of the three InsP3R isoforms, the two SERCA isoforms and the four Ca2+ binding proteins investigated. This heterogeneity may underlie specialization of the Ca2+ stores and the subsequent initiation of intracellular Ca2+ signals.  相似文献   

8.
ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.Inositol 1,4,5-trisphosphate receptors (InsP3R)3 are a family of large, tetrameric, InsP3-gated cation channels. The three members of this family (InsP3R1, InsP3R2, and InsP3R3) are nearly ubiquitously expressed and are localized primarily to the endoplasmic reticulum (ER) membrane (13). Numerous hormones, neurotransmitters, and growth factors bind to receptors that stimulate phospholipase C-induced InsP3 production (4). InsP3 subsequently binds to the InsP3R and induces channel opening. This pathway represents a major mechanism for Ca2+ liberation from ER stores (5). All three InsP3R isoforms are dynamically regulated by cytosolic factors in addition to InsP3 (1). Ca2+ is perhaps the most important determinant of InsP3R activity besides InsP3 itself and is known to regulate InsP3R both positively and negatively (6). ATP, in concert with InsP3 and Ca2+, also regulates InsP3R as do numerous kinases, phosphatases, and protein-binding partners (710). This intricate network of regulation allows InsP3R activity to be finely tuned by the local cytosolic environment (9). As a result, InsP3-induced Ca2+ signals can exhibit a wide variety of spatial and temporal patterns, which likely allows Ca2+ to control many diverse cellular processes.Modulation of InsP3-induced Ca2+ release (IICR) by ATP and other nucleotides provides a direct link between intracellular Ca2+ signaling and the metabolic state of the cell. Metabolic fluctuations could, therefore, impact Ca2+ signaling in many cell types given that InsP3R are expressed in all cells (11, 12). Consistent with this, ATP has been shown to augment IICR in many diverse cell types including primary neurons (13), smooth muscle cells (14), and exocrine acinar cells (15) as well as in immortalized cell lines (1618). The effects of ATP on InsP3R function do not require hydrolysis because non-hydrolyzable ATP analogues are as effective as ATP (7, 14). ATP is thought to bind to distinct regions in the central, coupling domain of the receptors and to facilitate channel opening (2, 19). ATP is not required for channel gating, but instead, increases InsP3R activity in an allosteric fashion by increasing the open probability of the channel in the presence of activating concentrations of InsP3 and Ca2+ (7, 8, 20).Despite a wealth of knowledge regarding the functional effects of ATP on InsP3R function, there is relatively little known about the molecular determinants of these actions. ATP is thought to exert effects on channel function by direct binding to glycine-rich regions containing the consensus sequence GXGXXG that are present in the receptors (2). These sequences were first proposed to be ATP-binding domains due to their similarity with Walker A motifs (21). The neuronal S2+ splice variant of InsP3R1 contains two such domains termed ATPA and ATPB. A third site, ATPC, is formed upon removal of the S2 splice site (2, 22). The ATPB site is conserved in InsP3R2 and InsP3R3, while the ATPA and ATPC sites are unique to InsP3R1. Our prior work examining the functional consequences of mutating these ATP-binding sites has yielded unexpected results. For example, mutating the ATPB site in InsP3R2 completely eliminated the enhancing effects of ATP on this isoform while mutating the analogous site in InsP3R3 failed to alter the effects of ATP (23). This indicated the presence of an additional locus for ATP modulation of InsP3R3. In addition, mutation of the ATPC in the S2 splice variant of InsP3R1 did not alter the ability of ATP to modulate Ca2+ release, but instead impaired the ability of protein kinase A to phosphorylate Ser-1755 of this isoform (22).The ATPA and ATPB sites in InsP3R1 were first identified as putative nucleotide-binding domains after the cloning of the full-length receptor (24). Early binding experiments with 8-azido-[α-32P]ATP established that ATP cross-linked with receptor purified from rat cerebellum at one site per receptor monomer (19). Later, more detailed, binding experiments on trypsinized recombinant rat InsP3R1 showed cross-linking of ATP to two distinct regions of the receptor that corresponded with the ATPA and ATPB sites (17). We and others (16, 22, 23) have also reported the binding of ATP analogues to purified GST fusions of small regions of InsP3R1 surrounding the ATPA and ATPB sites. It is widely accepted, in the context of the sequence similarity to Walker A motifs and biochemical data, that the ATPA and ATPB sites are the loci where ATP exerts its positive functional effects on InsP3R1 function (13, 16). Furthermore, the higher affinity of the ATPA site to ATP is thought to confer the higher sensitivity of InsP3R1 to ATP versus InsP3R3, which contains the ATPB site exclusively (25, 26). The purpose of this study, therefore, was to examine the contributions of the ATPA and ATPB sites to ATP modulation of the S2+ splice variant of InsP3R1. We compared the effects of ATP on InsP3R1 and on ATP-binding site mutated InsP3R1 using detailed functional analyses in permeabilized cells and in single channel recordings. Here we report that InsP3R1 is similar to InsP3R3 in that ATP modulates IICR even at maximal InsP3 concentrations and that neither the ATPA nor the ATPB site is required for this effect.  相似文献   

9.
The ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channel plays a central role in the generation and modulation of intracellular Ca2+ signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP3, free Ca2+, free ATP4−) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP3R channel activity by free Ca2+ in the ER lumen ([Ca2+]ER) remains poorly understood because of limitations of Ca2+ flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca2+]ER on homotetrameric rat type 3 InsP3R channel activity. In optimal [Ca2+]i and subsaturating [InsP3], jumps of [Ca2+]ER from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP3 but restored when [Ca2+]ER was raised to 1.1 mM. In suboptimal [Ca2+]i, jumps of [Ca2+]ER (70 nM to 300 µM) enhanced channel activity. Thus, [Ca2+]ER effects on channel activity exhibited a biphasic dependence on [Ca2+]i. In addition, the effect of high [Ca2+]ER was attenuated when a voltage was applied to oppose Ca2+ flux through the channel. These observations can be accounted for by Ca2+ flux driven through the open InsP3R channel by [Ca2+]ER, raising local [Ca2+]i around the channel to regulate its activity through its cytoplasmic regulatory Ca2+-binding sites. Importantly, [Ca2+]ER regulation of InsP3R channel activity depended on cytoplasmic Ca2+-buffering conditions: it was more pronounced when [Ca2+]i was weakly buffered but completely abolished in strong Ca2+-buffering conditions. With strong cytoplasmic buffering and Ca2+ flux sufficiently reduced by applied voltage, both activation and inhibition of InsP3R channel gating by physiological levels of [Ca2+]ER were completely abolished. Collectively, these results rule out Ca2+ regulation of channel activity by direct binding to the luminal aspect of the channel.  相似文献   

10.
Background information. Interconnections between the Ca2+ and cAMP signalling pathways can determine the specificity and diversity of the cellular effects mediated by these second messengers. Most cAMP effects are mediated by PKA (protein kinase A), which is anchored close to its membranous substrates by AKAPs (A kinase‐anchoring proteins). In many cell types, the activation of InsP3R (inositol 1,4,5‐trisphosphate receptor), an endoplasmic reticulum Ca2+ channel, is a key event of Ca2+ signalling. The phosphorylation of InsP3R1 by PKA stimulates Ca2+ mobilization. This control is thought to be tight, involving the association of PKA with InsP3R1. The InsP3R1 isoform predominates in central nervous tissue and its concentration is highest in the cerebellar microsomes. We investigated the complex formed by InsP3R1 and PKA in this fraction, vith a view to identifying its components and determining its distribution in the cerebellar cortex. Results. Immunoprecipitation experiments showed that InsP3R1 associated with PKA type IIβ and AKAP450, the longer variant of AKAP9, in sheep cerebellar microsomes. The co‐purification of AKAP450 with InsP3R1 on heparin‐agarose provided further evidence of the association of these proteins. Immunohistofluorescence experiments on slices of cerebellar cortex showed that AKAP450 was colocalized with InsP3R1 and RIIβ (regulatory subunit of PKA IIβ) in granule cells, but not in Purkinje cells. AKAP450 was localized in the Golgi apparatus of these two cell types whereas InsP3R1 was detected in this organelle only in granule cells. Conclusions. Taken together these results suggest that InsP3R1 forms a complex with AKAP450 and PKAIIβ, localized in the Golgi apparatus of cerebellar granule cells. In contrast, the association of InsP3R1 with PKA in Purkinje cells would require a different macromolecular complex.  相似文献   

11.
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2.Hormones, neurotransmitters, and growth factors stimulate the production of InsP33 and Ca2+ signals in virtually all cell types (1). The ubiquitous nature of this mode of signaling dictates that this pathway does not exist in isolation; indeed, a multitude of additional signaling pathways can be activated simultaneously. A prime example of this type of “cross-talk” between independently activated signaling systems results from the parallel activation of cAMP and Ca2+ signaling pathways (2, 3). Interactions between these two systems occur in numerous distinct cell types with various physiological consequences (36). Given the central role of InsP3R in Ca2+ signaling, a major route of modulating the spatial and temporal features of Ca2+ signals following cAMP production is potentially through PKA phosphorylation of the InsP3R isoform(s) expressed in a particular cell type.There are three InsP3R isoforms (InsP3R1, InsP3R2, and InsP3R3) expressed to varying degrees in mammalian cells (7, 8). InsP3R1 is the major isoform expressed in the nervous system, but it is less abundant compared with other subtypes in non-neuronal tissues (8). Ca2+ release via InsP3R2 and InsP3R3 predominate in these tissues. InsP3R2 is the major InsP3R isoform in many cell types, including hepatocytes (7, 8), astrocytes (9, 10), cardiac myocytes (11), and exocrine acinar cells (8, 12). Activation of PKA has been demonstrated to enhance InsP3-induced Ca2+ signaling in hepatocytes (13) and parotid acinar cells (4, 14). Although PKA phosphorylation of InsP3R2 is a likely causal mechanism underlying these effects, the functional effects of phosphorylation have not been determined in cells unambiguously expressing InsP3R2 in isolation. Furthermore, the molecular determinants of PKA phosphorylation of this isoform are not known.PKA-mediated phosphorylation is an efficient means of transiently and reversibly regulating the activity of the InsP3R. InsP3R1 was identified as a major substrate of PKA in the brain prior to its identification as the InsP3R (15, 16). However, until recently, the functional consequences of phosphorylation were unresolved. Initial conflicting results were reported indicating that phosphoregulation of InsP3R1 could result in either inhibition or stimulation of receptor activity (16, 17). Mutagenic strategies were employed by our laboratory to clarify this discrepancy. These studies unequivocally assigned phosphorylation-dependent enhanced Ca2+ release and InsP3R1 activity at the single channel level, through phosphorylation at canonical PKA consensus motifs at Ser1589 and Ser1755. The sites responsible were also shown to be specific to the particular InsP3R1 splice variant (18). These data were also corroborated by replacing the relevant serines with glutamates in a strategy designed to construct “phosphomimetic” InsP3R1 by mimicking the negative charge added by phosphorylation (19, 20). Of particular note, however, although all three isoforms are substrates for PKA, neither of the sites phosphorylated by PKA in InsP3R1 are conserved in the other two isoforms (21). Recently, three distinct PKA phosphorylation sites were identified in InsP3R3 that were in different regions of the protein when compared with InsP3R1 (22). To date, no PKA phosphorylation sites have been identified in InsP3R2.Interactions between Ca2+ and cAMP signaling pathways are evident in exocrine acinar cells of the parotid salivary gland. In these cells, both signals are important mediators of fluid and protein secretion (23). Multiple components of the [Ca2+]i signaling pathway in these cells are potential substrates for modulation by PKA. Previous work from this laboratory established that activation of PKA potentiates muscarinic acetylcholine receptor-induced [Ca2+]i signaling in mouse and human parotid acinar cells (4, 24, 25). A likely mechanism to explain this effect is that PKA phosphorylation increases the activity of InsP3R expressed in these cells. Consistent with this idea, activation of PKA enhanced InsP3-induced Ca2+ release in permeabilized mouse parotid acinar cells and also resulted in the phosphorylation of InsP3R2 (4).Invariably, prior work examining the functional effects of PKA phosphorylation on InsP3R2 has been performed using cell types expressing multiple InsP3R isoforms. For example, AR4-2J cells are the preferred cell type for examining InsP3R2 in relative isolation, because this isoform constitutes more than 85% of the total InsP3R population (8). InsP3R1, however, contributes up to ∼12% of the total InsP3R in AR4-2J cells. An initial report using InsP3-mediated 45Ca2+ flux suggested that PKA activation increased InsP3R activity in AR4-2J cells (21). A similar conclusion was made in a later study, which documented the effects of PKA activation on agonist stimulated Ca2+ signals in AR4-2J cells (26). Any effects of phosphorylation observed in these experiments could plausibly have resulted from phosphorylation of the residual InsP3R1.Although PKA enhances InsP3-induced calcium release in cells expressing predominantly InsP3R2, including hepatocytes, parotid acinar cells, and AR4-2J cells (4, 13, 21, 26, 27), InsP3R2 is not phosphorylated at stoichiometric levels by PKA (21). This observation has called into question the physiological significance of PKA phosphorylation of InsP3R2 (28). The apparent low levels of InsP3R2 phosphorylation are clearly at odds with the augmented Ca2+ release observed in cells expressing predominantly this isoform. The equivocal nature of these findings probably stems from the fact that, to date, all of the studies demonstrating positive effects of PKA activation on Ca2+ release were conducted in cells that also express InsP3R1. The purpose of the current experiments was to analyze the functional effects of phosphorylation on InsP3R2 expressed in isolation on a null background. We report that InsP3R2 activity is increased by PKA phosphorylation under these conditions, and furthermore, we have identified a unique phosphorylation site in InsP3R2 at Ser937. In total, these results provide a direct mechanism for the cAMP-induced activation of InsP3R2 via PKA phosphorylation of InsP3R2.  相似文献   

12.
The inositol 1,4,5-trisphosphate (InsP3)-gated Ca channel in cerebellum is tightly regulated by Ca (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature (Lond.). 351:751–754; Finch, E.A., T.J. Turner, and S.M. Goldin. 1991. Science (Wash. DC). 252:443–446; Hannaert-Merah, Z., J.F. Coquil, L. Combettes, M. Claret, J.P. Mauger, and P. Champeil. 1994. J. Biol. Chem. 269:29642–29649; Iino, M. 1990. J. Gen. Physiol. 95:1103–1122; Marshall, I., and C. Taylor. 1994. Biochem. J. 301:591–598). In previous single channel studies, the Ca dependence of channel activity, monitored at 2 μM InsP3, was described by a bell-shaped curve (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature (Lond.). 351:751–754). We report here that, when we used lower InsP3 concentrations, the peak of the Ca-dependence curve shifted to lower Ca concentrations. Unexpectedly, when we used high InsP3 concentrations, channel activity persisted at Ca concentrations as high as 30 μM. To explore this unexpected response of the channel, we measured InsP3 binding over a broad range of InsP3 concentrations. We found the well-characterized high affinity InsP3 binding sites (with K d < 1 and 50 nM) (Maeda, N., M. Niinobe, and K. Mikoshiba. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:61–67; Mignery, G., T.C. Sudhof, K. Takei, and P. De Camilli. 1989. Nature (Lond.). 342:192–195; Ross, C.A., J. Meldolesi, T.A. Milner, T. Satoh, S. Supattapone, and S.H. Snyder. 1989. Nature (Lond.). 339:468–470) and a low affinity InsP3 binding site (K d = 10 μM). Using these InsP3 binding sites, we developed a new model that accounts for the shift in the Ca-dependence curve at low InsP3 levels and the maintained channel activity at high Ca and InsP3 levels. The observed Ca dependence of the InsP3-gated Ca channel allows the cell to abbreviate the rise of intracellular Ca in the presence of low levels of InsP3, but also provides a means of maintaining high intracellular Ca during periods of prolonged stimulation.  相似文献   

13.
14.
To clarify the molecular mechanisms behind quantal Ca2+ release, the graded Ca2+ release from intracellular stores through inositol 1,4,5-trisphosphate receptor (InsP3R) channels responding to incremental ligand stimulation, single-channel patch-clamp electrophysiology was used to continuously monitor the number and open probability of InsP3R channels in the same excised cytoplasmic-side-out nuclear membrane patches exposed alternately to optimal and suboptimal cytoplasmic ligand conditions. Progressively more channels were activated by more favorable conditions in patches from insect cells with only one InsP3R gene or from cells solely expressing one recombinant InsP3R isoform, demonstrating that channels with identical primary sequence have different ligand recruitment thresholds. Such heterogeneity was largely abrogated, in a fully reversible manner, by treatment of the channels with sulfhydryl reducing agents, suggesting that it was mostly regulated by different levels of posttranslational redox modifications of the channels. In contrast, sulfhydryl reduction had limited effects on channel open probability. Thus, sulfhydryl redox modification can regulate various aspects of intracellular Ca2+ signaling, including quantal Ca2+ release, by tuning ligand sensitivities of InsP3R channels. No intrinsic termination of channel activity with a timescale comparable to that for quantal Ca2+ release was observed under any steady ligand conditions, indicating that this process is unlikely to contribute.  相似文献   

15.
Cardiac hypertrophy is associated with profound remodelling of Ca2+ signalling pathways. During the early, compensated stages of hypertrophy, Ca2+ fluxes may be enhanced to facilitate greater contraction, whereas as the hypertrophic heart decompensates, Ca2+ homeostatic mechanisms are dysregulated leading to decreased contractility, arrhythmia and death. Although ryanodine receptor Ca2+ release channels (RyR) on the sarcoplasmic reticulum (SR) intracellular Ca2+ store are primarily responsible for the Ca2+ flux that induces myocyte contraction, a role for Ca2+ release via the inositol 1,4,5-trisphosphate receptor (InsP3R) in cardiac physiology has also emerged. Specifically, InsP3-induced Ca2+ signals generated following myocyte stimulation with an InsP3-generating agonist (e.g. endothelin, ET-1), lead to modulation of Ca2+ signals associated with excitation-contraction coupling (ECC) and the induction of spontaneous Ca2+ release events that cause cellular arrhythmia. Using myocytes from spontaneously hypertensive rats (SHR), we recently reported that expression of the type 2 InsP3R (InsP3R2) is significantly increased during hypertrophy. Notably, this increased expression was restricted to the junctional SR in close proximity to RyRs. There, enhanced Ca2+ release via InsP3Rs serves to sensitise neighbouring RyRs causing an augmentation of Ca2+ fluxes during ECC as well as an increase in non-triggered Ca2+ release events. Although the sensitization of RyRs may be a beneficial consequence of elevated InsP3R expression during hypertrophy, the spontaneous Ca2+ release events are potentially of pathological significance giving rise to cardiac arrhythmia. InsP3R2 expression was also increased in hypertrophic hearts from patients with ischemic dilated cardiomyopathy and aortically-banded mice demonstrating that increased InsP3R expression may be a general phenomenon that underlies Ca2+ changes during hypertrophy.  相似文献   

16.
Summary Inositol 1,4,5-trisphosphate (InsP3) is rapidly formed in squid photoreceptors in response to light, where it is converted sequenctially into inositol bisphosphate (InsP2) and inositol monophosphate (InsP1). All of the InsP3 appears to be degraded to inositol 1,4-bisphosphate via an InsP3-phosphatase, which is characterized in this study. The enzyme is water-soluble and present in the light-transducing distal segments of squid photoreceptors. It has a Km of 50 M for InsP3, requires Mg++ for its activity, is maximally active at neutral pH, specifically hydrolyses the 5-phosphate and is inhibited by 2,3-diphosphoglycerate. In these respects, InsP3-phosphatase of squid is very similar to the enzymes of other cells. Since no InsP4 or more highly phosphorylated inositols are found in squid photoreceptors, the InsP3-phosphatase may be important in the regulation of InsP3 concentration within these cells.Abbreviations InsP 1 , InsP 2 , InsP 3 , InsP 4 , InsP 6 inositol monobis-, tris-, tetrakis-, hexakisphosphate, respectively - 2,3-DPG 2,3-diphosphoglycerate - EDTA ethylene diamine tetraacetic acid - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PMSF phenylmethylsulfonyl fluoride  相似文献   

17.
Smooth muscle activities are regulated by inositol 1,4,5-trisphosphate (InsP3)-mediated increases in cytosolic Ca2+ concentration ([Ca2+]c). Local Ca2+ release from an InsP3 receptor (InsP3R) cluster present on the sarcoplasmic reticulum is termed a Ca2+ puff. Ca2+ released via InsP3R may diffuse to adjacent clusters to trigger further release and generate a cell-wide (global) Ca2+ rise. In smooth muscle, mitochondrial Ca2+ uptake maintains global InsP3-mediated Ca2+ release by preventing a negative feedback effect of high [Ca2+] on InsP3R. Mitochondria may regulate InsP3-mediated Ca2+ signals by operating between or within InsP3R clusters. In the former mitochondria could regulate only global Ca2+ signals, whereas in the latter both local and global signals would be affected. Here whether mitochondria maintain InsP3-mediated Ca2+ release by operating within (local) or between (global) InsP3R clusters has been addressed. Ca2+ puffs evoked by localized photolysis of InsP3 in single voltage-clamped colonic smooth muscle cells had amplitudes of 0.5–4.0 F/F0, durations of ∼112 ms at half-maximum amplitude, and were abolished by the InsP3R inhibitor 2-aminoethoxydiphenyl borate. The protonophore carbonyl cyanide 3-chloropheylhydrazone and complex I inhibitor rotenone each depolarized ΔΨM to prevent mitochondrial Ca2+ uptake and attenuated Ca2+ puffs by ∼66 or ∼60%, respectively. The mitochondrial uniporter inhibitor, RU360, attenuated Ca2+ puffs by ∼62%. The “fast” Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acted like mitochondria to prolong InsP3-mediated Ca2+ release suggesting that mitochondrial influence is via their Ca2+ uptake facility. These results indicate Ca2+ uptake occurs quickly enough to influence InsP3R communication at the intra-cluster level and that mitochondria regulate both local and global InsP3-mediated Ca2+ signals.  相似文献   

18.
19.
The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms.  相似文献   

20.
InsP3-mediated calcium release through the type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2) in cardiac myocytes results in the activation of associated CaMKII, thus enabling the kinase to act on downstream targets, such as histone deacetylases 4 and 5 (HDAC4 and HDAC5). The CaMKII activity also feedback modulates InsP3R2 function by direct phosphorylation and results in a dramatic decrease in the receptor-channel open probability (Po). We have identified S150 in the InsP3R2 core suppressor domain (amino acids 1–225) as the specific residue that is phosphorylated by CaMKII. Site-directed mutagenesis reveals that S150 is the CaMKII phosphorylation site responsible for modulation of channel activity. Nonphosphorylatable (S150A) and phosphomimetic (S150E) mutations were studied in planar lipid bilayers. The InsP3R2 S150A channel showed no decrease in activity when treated with CaMKII. Conversely, the phosphomimetic (S150E) channel displayed a very low Po under normal recording conditions in the absence of CaMKII (2 μm InsP3 and 250 nm [Ca2+]FREE) and mimicked a WT channel that has been phosphorylated by CaMKII. Phopho-specific antibodies demonstrate that InsP3R2 Ser-150 is phosphorylated in vivo by CaMKIIδ. The results of this study show that serine 150 of the InsP3R2 is phosphorylated by CaMKII and results in a decrease in the channel open probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号