首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In adults, hematopoiesis occurs in bone marrow (BM) through a complex process with differentiation of hematopoietic stem cells (HSCs) to immune and blood cells. Human HSCs and their progenitors express CD34. Methods on hematopoietic regulation are presented to show the effects of the chemokine, stromal-derived growth factor (SDF)-1α and the neuropeptide, substance P (SP). SDF-1α production in BM stroma causes interactions with HSCs, thereby retaining the HSCs in regions close to the endosteum, at low oxygen. Small changes in SDF-1α levels stimulate HSC functions through direct and indirect mechanisms. The indirect method occurs by SP production, which stimulates CD34+ cells, supported by ligand-binding studies, long-term culture-initiating cell assays for HSC functions, and clonogenic assays for myeloid progenitors. These methods can be applied to study other hematopoietic regulators.  相似文献   

2.
Hematopoietic stem cell (HSC) division leads to self-renewal, differentiation, or death of HSCs, and adequate balance of this process results in sustained, lifelong, high-throughput hematopoiesis. Despite their contribution to hematopoietic cell production, the majority of cells within the HSC population are quiescent at any given time. Recent studies have tackled the questions of how often HSCs divide, how divisional history relates to repopulating potential, and how many HSCs contribute to hematopoiesis. Here, we summarize these recent findings on HSC turnover from different experimental systems and discuss hypothetical models for HSC cycling and maintenance in steady-state and upon hematopoietic challenge.  相似文献   

3.
Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.  相似文献   

4.
5.
6.
rES (rhesus monkey embryonic stem) cells have similar characteristics to human ES (embryonic stem) cells, and might be useful as a substitute model for preclinical research. Before their clinical application, it is critical to understand the roles of factors that control the differentiation of ES cells into hepatocytes. Here, we analysed the effect of collagen gels on rES cells differentiation into hepatocytes by stepwise protocols. About 80% of DE (definitive endoderm) cells were generated from rES cells after being treated with activin A. The DE cells were then plated on to collagen gels or type I collagen-coated wells with growth factors to induce hepatocyte differentiation. In type I collagen systems, characteristics of immature hepatocytes were observed, including the expression of immature hepatic genes and the generation of 15±3% AFP (alpha fetoprotein)/CK (cytokeratin)18 double-positive cells. In collagen gel culture, differentiated cells exhibited typical hepatocyte morphology and expressed adult liver-specific genes. The mRNA expression of AFP (immature hepatic gene) was detected at day 11 but decreased at day 18. In contrast, mRNA expression of albumin (mature hepatic gene) was detected at day 11 and increased at day 18. Compared with type I collagen systems, significantly higher AFP/CK18 double-positive cells (68±7%) were produced in collagen gel culture. Furthermore, some differentiated cells acquired the hepatocytic function of glycogen storage. However, only immature hepatic genes were observed in collagen gel systems if growth factors were absent. Thus, collagen gels combined with hepatocyte-inducing growth factors efficiently promoted differentiation of hepatocytes from rES.  相似文献   

7.
Differentiation of stem cells is tightly regulated by the microenvironment which is mainly composed of nonparenchymal cells. Herein, we investigated effect of hepatic stellate cells (HSCs) in different states on mesenchymal stem cells (MSCs) differentiation. Rat HSCs were isolated and stayed quiescent within 5 days. Primary HSCs were activated by being in vitro cultured for 7 days or cocultured with Kupffer cells for 5 days. MSCs were cocultured with HSCs of different states. Expression of hepatic lineage markers was analyzed by RT-PCR and immunofluorescence. Glycogen deposition was detected by periodic acid-schiff staining. MSCs cocultured with HSC-T6 or Kupffer cell activated HSCs were morphologically transformed into hepatocyte-like cells. Hepatic-specific marker albumin was expressed in 78.3% of the differentiated MSCs 2 weeks after initiation of coculture. In addition, the differentiated MSCs also expressed alpha-fetoprotein, cytokeratin-18, glutamine synthetase and phosphoenolpyruvate carboxykinase. Glycogen deposition was detectable in 55.4% of the differentiated MSCs 6 weeks after initiation of coculture. However, the quiescent HSCs or culture activated HSCs did not exert the ability to modulate the differentiation of MSCs. Moreover, Kupffer cell activated HSCs rather than culture activated HSCs expressed hepatocyte growth factor mRNA. We draw the conclusion that fully activated HSCs could modulate MSCs differentiation into hepatocyte-like cells.  相似文献   

8.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo   总被引:48,自引:0,他引:48  
  相似文献   

9.
Liver regeneration involves not only hepatocyte replication but progenitor aggregation and scarring. Partial hepatectomy (PH), an established model for liver regeneration, reactivates transforming growth factor-β (TGF-β) signaling. Hepatic stellate cells (HSCs) are primarily responding cells for TGF-β and resident in stem cell niche. In the current study, PH mice were treated with SB-431542, an inhibitor of TGF-β Type I receptor, aiming to address the role of TGF-β signaling on the fate determination of HSCs during liver regeneration. After PH, control mice exhibited HSCs activation, progenitor cells accumulation, and a fraction of HSCs acquired the phenotype of hepatocyte or cholangiocyte. Blocking TGF-β signaling delayed proliferation, impaired progenitor response, and scarring repair. In SB-431542 group, merely no HSCs were found coexpressed progenitor makers, such as SOX9 and AFP. Inhibition of TGF-β pathway disturbed the epithelial-mesenchymal transitions and diminished the nuclear accumulation of β-catenin as well as the expression of cytochrome P450 2E1 in HSC during liver regeneration. We identify a key role of TGF-β signaling on promoting HSC transition, which subsequently becomes progenitor for generating liver epithelial cells after PH. This process might interact with an acknowledged stem cell function signaling, Wnt/β-catenin.  相似文献   

10.
The molecular basis governing functional behavior of human hematopoietic stem cells (HSCs) is largely unknown. Here, using in vitro and in vivo assays, we isolate and define progenitors versus repopulating HSCs from multiple stages of human development for global gene expression profiling. Accounting for both the hierarchical relationship between repopulating cells and their progenitors, and the enhanced HSC function unique to early stages of ontogeny, the human homologs of Hairy Enhancer of Split-1 (HES-1) and Hepatocyte Leukemia Factor (HLF) were identified as candidate regulators of HSCs. Transgenic human hematopoietic cells expressing HES-1 or HLF demonstrated enhanced in vivo reconstitution ability that correlated to increased cycling frequency and inhibition of apoptosis, respectively. Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems, suggesting that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior.  相似文献   

11.
12.
BackgroundDendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy.MethodsIn a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo. Herein, a DC induction and expansion medium (DC medium) was proposed to further generate large numbers of functional DCs from serum-free expanded HSCs, which were developed and optimized by factorial design and the steepest ascent method.ResultsThe DC medium is composed of effective basal medium (Iscove's modified Dulbecco's medium [IMDM]) and cytokines (2.9 ng/mL stem cell factor [SCF], 2.1 ng/mL Flt-3 ligand, 3.6 ng/mL interleukin [IL]-1β, 19.3 ng/mL granulocyte-macrophage colony-stimulating factor [GM-CSF] and 20.0 ng/mL tumor necrosis factor-α [TNF-α]). After 10-day culture in DC medium, the maximum fold expansion for accumulated CD1a+CD11c+ DCs was more than 4000-fold, and the induced DCs were characterized and confirmed by analysis of growth kinetics, surface antigen expression, endocytosis ability, mixed lymphocyte reaction, specific cytokine secretion and lipopolysaccharide stimulation.DiscussionIn conclusion, the combination of DC medium and SF-HSC medium can efficiently induce and expand a large amount of functional DCs from a small scale of HSCs and might be a promising source of DCs for vaccine and immune therapy in the near future.  相似文献   

13.
Hepatic stellate cells (HSCs) are a type of nonparenchymal liver cells (NPCs) and are present in the perisinusoidal space of Disse. Hepatocytes were cocultured with HSCs isolated from the NPC fraction with the aim of maintaining differentiated liver functions in vitro. Hepatocytes inoculated directly onto the HSC layer (Co-mix) exhibited lower activity of albumin secretion and higher DNA synthesis activity than hepatocytes of the monoculture control. On the contrary, hepatocytes cocultured with HSCs but separated by a semipermeable membrane (Co-sep) maintained the activities of albumin secretion and urea synthesis. The soluble factor(s) secreted from HSCs had the maintenance effect. Subcultured HSCs were activated to myofibroblast-like cells (MFBs) and decreased the maintenance effect on hepatocyte function. However, the MFBs were found to resume the ability to maintain the hepatocyte function by cultivation on type I collagen. The coculture of hepatocytes and HSCS/MFB could be applied to the development of bioartificial liver support system and liver regenerative medicine.  相似文献   

14.
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.  相似文献   

15.
Hepatic stellate cells (HSC) play an important role in the development of liver fibrosis. Here, we report that HSC express the stem/progenitor cell marker CD133 and exhibit properties of progenitor cells. CD133+ HSC of rats were selected by specific antibodies and magnetic cell sorting. Selected cells displayed typical markers of HSC, endothelial progenitor cells (EPC), and monocytes. In cell culture, CD133+ HSC transformed into alpha-smooth muscle actin positive myofibroblast-like cells, whereas application of cytokines known to facilitate EPC differentiation into endothelial cells led to the formation of branched tube-like structures and induced expression of the endothelial cell markers endothelial nitric oxide synthase and vascular-endothelial cadherin. Moreover, cytokines that guide stem cells to develop hepatocytes led to the appearance of rotund cells and expression of the hepatocyte markers alpha-fetoprotein and albumin. It is concluded that CD133+ HSC are a not yet recognized progenitor cell compartment with characteristics of early EPC. Their potential to differentiate into endothelial or hepatocyte lineages suggests important functions of CD133+ HSC during liver regeneration.  相似文献   

16.
17.
18.
19.
Disentangling cellular heterogeneity is a challenge in many fields, particularly in the stem cell and cancer biology fields. Here we demonstrate how to combine viral genetic barcoding with high-throughput sequencing to track single cells in a heterogeneous population. We use this technique to track the in vivo differentiation of unitary hematopoietic stem cells (HSCs). The results are consistent with single-cell transplantation studies but require two orders of magnitude fewer mice. In addition to its high throughput, the high sensitivity of the technique allows for a direct examination of the clonality of sparse cell populations such as HSCs. We show how these capabilities offer a clonal perspective of the HSC differentiation process. In particular, our data suggest that HSCs do not equally contribute to blood cells after irradiation-mediated transplantation, and that two distinct HSC differentiation patterns co-exist in the same recipient mouse after irradiation. This technique can be applied to any virus-accessible cell type for both in vitro and in vivo processes.  相似文献   

20.
Circulation and chemotaxis of fetal hematopoietic stem cells   总被引:7,自引:0,他引:7  
The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure HSC activity, we determined the localization of HSCs in the mid-to-late gestation fetus. We found that multilineage reconstituting HSCs are present at low numbers in the blood at all timepoints measured. Seeding of fetal bone marrow and spleen occurred over several days, possibly while stem cell niches formed. In addition, using dual-chamber migration assays, we determined that like bone marrow HSCs, fetal liver HSCs migrate in response to stromal cell-derived factor-1α (SDF-1α); however, unlike bone marrow HSCs, the migratory response of fetal liver HSCs to SDF-1α is greatly increased in the presence of Steel factor (SLF), suggesting an important role for SLF in HSC homing to and seeding of the fetal hematopoietic tissues. Together, these data demonstrate that seeding of fetal organs by fetal liver HSCs does not require large fluxes of HSCs entering the fetal bloodstream, and that HSCs constitutively circulate at low levels during the gestational period from 12 to 17 days postconception. Newly forming hematopoietic tissues are seeded gradually by HSCs, suggesting initial seeding is occurring as hematopoietic niches in the spleen and bone marrow form and become capable of supporting HSC self-renewal. We demonstrate that fetal and adult HSCs exhibit specific differences in chemotactic behavior. While both migrate in response to SDF-1α, fetal HSCs also respond significantly to the cytokine SLF. In addition, the combination of SDF-1α and SLF results in substantially enhanced migration of fetal HSCs, leading to migration of nearly all fetal HSCs in this assay. This finding indicates the importance of the combined effects of SLF and SDF-1α in the migration of fetal HSCs, and is, to our knowledge, the first demonstration of a synergistic effect of two chemoattractive agents on HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号