首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

2.
A novel technique was employed to collect resonance Raman spectra of an oxygenated intermediate of cytochrome c oxidase. Instead of laser pulses of high peak power, which may cause photodissociation, a continuous wave laser and a mixed flow apparatus were used. An intermediate formed within 450 microseconds after the reaction of cytochrome c oxidase with molecular oxygen could be detected. From the spectra it could be deduced that the most likely candidate for the intermediate would be a transient oxygenated species having the Fe2+ - O2 or Fe4+ = O heme in cytochrome a3 and the Fe2+ heme in cytochrome a.  相似文献   

3.
A 300 mus decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 mus actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375 +/- 10 mV (pH = 7.5). These data suggest the assignment of the 300-mus decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171-1174 (1971)).  相似文献   

4.
Winter wheat is sown in the autumn and harvested the following summer, necessitating the ability to survive subfreezing temperatures for several months. Autumn months in wheat-growing regions typically experience significant rainfall and several days or weeks of mild subfreezing temperatures at night, followed by above-freezing temperatures in the day. Hence, the wheat plants usually are first exposed to potentially damaging subfreezing temperatures when they have high moisture content, are growing in very wet soil, and have been exposed to freeze-thaw cycles for a period of time. These conditions are conducive to freezing stresses and plant responses that are different from those that occur under lower moisture conditions without freeze-thaw cycles. This study was conducted to investigate the impact of mild subfreezing temperature and a freeze-thaw cycle on the ability of 22 winter wheat cultivars to tolerate freezing in saturated soil. Seedlings that had been acclimated at +4°C for 5 weeks in saturated soil were frozen to potentially damaging temperatures under three treatment conditions: (1) without any subzero pre-freezing treatment; (2) with a 16-h period at ?3°C prior to freezing to potentially damaging temperatures; and (3) with a freeze-thaw cycle of ?3°C for 24 h followed by +4°C for 24 h, followed by a 16-h period at ?3°C prior to freezing to potentially damaging temperatures. In general, plants that had been exposed to the freeze-thaw cycle survived significantly more frequently than plants frozen under the other two treatments. Plants that had been exposed to 16 h at ?3° (without the freeze-thaw cycle) before freezing to potentially damaging temperatures survived significantly more frequently than plants that were frozen to potentially damaging temperatures without a subzero pre-freezing treatment. These results indicated that cold-acclimated wheat plants actively acclimate to freezing stress while exposed to mild subfreezing temperatures, and further acclimate when allowed to thaw at +4°C for 24 h. The cultivar Norstar had the lowest LT50 (temperature predicted to be lethal to 50% of the plants) of the 22 cultivars when frozen with either of the subzero pre-freezing treatments, but several cultivars had lower LT50 scores than Norstar when frozen without a subzero pre-freezing treatment. We conclude it may be possible to improve winterhardiness of wheat grown in saturated soil by combining the ability to effectively respond to mild subzero pre-freezing temperatures with a greater ability to withstand freezing to damaging temperatures without a subzero pre-freezing exposure.  相似文献   

5.
Resealed erythrocyte membranes (ghosts) filled with (Fe3+)cytochrome c were used as an assay system to measure the release of superoxide (O-2) from human phagocytes into the incubation medium. Neutrophils, activated by either opsonized zymosan particles or the soluble stimulus phorbol myristate acetate, released O-2, which subsequently entered the ghosts and reduced (Fe3+)cytochrome c. This reaction was dependent on the time of incubation, the concentration of neutrophils, the concentration of stimulus, and the concentration of ghosts. The reaction was completely inhibited by superoxide dismutase and by 4,4'-diisothiocyano-2,2'-disulfonic acid, a specific blocker of anion channels in membranes. The reduction of (Fe3+)cytochrome c free in solution was about four times as fast as the reduction of (Fe3+)cytochrome c in the ghosts. Human eosinophils stimulated by phorbol myristate acetate reacted similarly to human neutrophils; the rate of O-2 production/cell was about twice as high for eosinophils as for neutrophils. In contrast, eosinophils stimulated with opsonized zymosan particles only reduced (Fe3+)cytochrome c free in solution, but not (Fe3+)cytochrome c in ghosts. This lack of reaction was not due to production of an inhibitor or below threshold generation of O-2 for the ghost assay. These results indicate: 1) activated human neutrophils and eosinophils can release O-2 or a similar product into the incubation medium; and 2) reduction of (Fe3+)cytochrome c free in solution is no proof for O-2 excretion by phagocytes.  相似文献   

6.
Reduction of iron is important in promoting xenobiotic-enhanced, microsomal lipid peroxidation, yet there is little evidence that Fe3+ chelates that promote lipid peroxidation can be reduced by the microsomal system. We have shown that rat liver microsomes catalyse NADPH-dependent reduction of Fe3+ without chelator, as well as Fe3+(ADP), Fe3+(ATP), Fe3+(citrate), Fe3+(EDTA), and ferrioxamine in N2. The NADPH oxidation that accompanied Fe3+ reduction was inhibited by CO for all chelates, except Fe3+ (EDTA). This implies that, except for Fe3+ (EDTA), cytochrome P450 was involved in reduction of the complexes. Adriamycin, paraquat, and anthraquinone 2-sulfonate (AQS) enhanced reduction of all the Fe3+ chelates, whereas menadione enhanced reduction only of Fe3+(ADP) and Fe3+(citrate). All the compounds enhanced oxidation of NADPH in the presence or absence of iron. This was not inhibited by CO, and the results are compatible with Fe3+ reduction occurring via the xenobiotic radicals produced by cytochrome P450 reductase. Microsomal reduction of the xenobiotics, except menadione, enabled the reduction and release of iron from ferritin. Fe3+ chelate reduction, both with and without xenobiotic, was inhibited by O2, although it still proceeded in air at 10-20% of the rate in N2. Iron-dependent lipid peroxidation was promoted by ADP and ATP, inhibited 50% by citrate, and completely inhibited by EDTA and desferrioxamine. Of the xenobiotics, only Adriamycin enhanced microsomal lipid peroxidation. These results indicate that the effects of chelators and xenobiotics on Fe3+ reduction do not correlate with lipid peroxidation and, although reduction is necessary, there must be other factors involved.  相似文献   

7.
The role of NADPH--cytochrome P450 reductase and cytochrome P450 in NADPH- and ADP--Fe3(+)-dependent lipid peroxidation was investigated by using the purified enzymes and liposomes prepared from either total rat-liver phospholipids or a mixture of bovine phosphatidyl choline and phosphatidyl ethanolamine (PC/PE liposomes). The results suggest that NADPH- and ADP--Fe3(+)-dependent lipid peroxidation involves both NADPH--cytochrome P450 reductase and cytochrome P450. Just as in the case of cytochrome P450-linked monooxygenations, the role of these enzymes in lipid peroxidation may be to provide two electrons for O2 reduction. The first electron is used for reduction of ADP--Fe3+ and subsequent addition of O2 to the perferryl radical (ADP--Fe3(+)-O2-), which then extracts an H atom from a polyunsaturated lipid (LH) giving rise to a free radical (LH.) that reacts with O2 yielding a peroxide free radical (LOO.). The second electron is then used to reduce LOO. to the lipid hydroperoxide (LOOH). In the latter capacity, reduced cytochrome P450 can be replaced by EDTA--Fe2+ or by the superoxide radical as generated through redox cycling of a quinone such as menadione.  相似文献   

8.
The light-induced difference spectra of the fully reduced (a2+ a23+-CO) complex and the mixed-valence carboxycytochrome c oxidase (a3+ a23+-CO) during steady-state illumination and after flash photolysis showed marked differences. The differences appear to be due to electron transfer between the redox centres in the enzyme. The product of the absorbance coefficient and the quantum yield was found to be equal in both enzyme species, both when determined from the rates of photolysis and from the values of the dissociation constants of the cytochrome a23+-CO complex. This would confirm that the spectral properties of cytochrome a3 are not affected by the redox state of cytochrome a and CuA. When the absorbance changes after photolysis of cytochrome a23+-CO with a laser flash were followed on a time scale from 1 mus to 1 s in the fully reduced carboxycytochrome c oxidase, only the CO recombination reaction was observed. However, in the mixed-valence enzyme an additional fast absorbance change (k = 7 X 10(3) s-1) was detected. The kinetic difference spectrum of this fast change showed a peak at 415 nm and a trough at 445 nm, corresponding to oxidation of cytochrome a3. Concomitantly, a decrease of the 830 nm band was observed due to reduction of CuA. This demonstrates that in the partially reduced enzyme a pathway is present between CuA and the cytochrome a3-CuB pair, via which electrons are transferred rapidly.  相似文献   

9.
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+(3)-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+(3)-NO and recombination of NO with cytochrome a2+(3) (in the 30-70 K region) revealed no differences in structure between cytochrome a2+(3) in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+(3)-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+(3)-NO. Photodissociation of cytochrome a2+(3)-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+(3) to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20-40 K region) which differ completely from those observed in cytochrome a2+(3)-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+(3)-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with delta ms = 2 EPR signals at g 4 and delta ms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

10.
F G Fiamingo  D W Jung  J O Alben 《Biochemistry》1990,29(19):4627-4633
Ethanol has been observed to cause a perturbation of the catalytic center of the major respiratory protein cytochrome c oxidase. These effects were examined by Fourier transform infrared spectroscopy of carbon monoxide complexes of cytochrome a3Fe and of CuB formed by low-temperature photodissociation of the a3FeCO complex. Carbon monoxide binds to reduced cytochrome oxidase in two major structural forms, alpha and beta, both of which are altered by ethanol. In the absence of ethanol, 15-22% of the total cytochrome oxidase in beef heart mitochondria was observed as beta-forms. Ethanol addition caused a concentration-dependent elimination of the beta-forms with 40% disappearing at 0.05 M (0.23%) ethanol, a concentration that can readily be achieved in the blood of intoxicated individuals. At 0.5 M (2.3%) ethanol and above, almost no beta-forms were detectable. The alpha-CuBCO absorption normally splits into two bands at temperatures below 40 K. This effect was decreased in the presence of ethanol and eliminated by high ethanol concentrations. It appears that ethanol increases the structural fluctuations at the active site of the enzyme, analogous to the effects of increased temperature. There was an 8-10% decrease in the maximum rate of oxygen reduction by mitochondrial cytochrome oxidase in 0.05 M ethanol at 24 degrees C, while higher concentrations of ethanol caused no further inhibition. This is the first demonstration that alpha- and beta-forms of cytochrome c oxidase can be modified by an externally added reagent. Changes in the spectra of alpha-CuBCO in the presence of 50% (v/v) ethylene glycol were quite striking, but variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Electron transfer from the tetraheme cytochrome c to the special pair of bacteriochlorophylls (P) has been studied by flash absorption spectroscopy in reaction centers isolated from seven strains of the photosynthetic purple bacterium Rhodopseudomonas viridis, where the residue L162, located between the proximal heme c-559 and P, is Y (wild type), F, W, G, M, T, or L. Measurements were performed between 294 K and 8 K, under redox conditions in which the two high-potential hemes of the cytochrome were chemically reduced. At room temperature, the kinetics of P+ reduction include two phases in all of the strains: a dominant very fast phase (VF), and a minor fast phase (F). The VF phase has the following t(1/2): 90 ns (M), 130 ns (W), 135 ns (F), 189 ns (Y; wild type), 200 ns (G), 390 ns (L), and 430 ns (T). These data show that electron transfer is fast whatever the nature of the amino acid at position L162. The amplitudes of both phases decrease suddenly around 200 K in Y, F, and W. The effect of temperature on the extent of fast phases is different in mutants G, M, L, and T, in which electron transfer from c-559 to P+ takes place at cryogenic temperatures in a substantial fraction of the reaction centers (T, 48%; G, 38%; L, 23%, at 40 K; and M, 28%, at 60 K), producing a stable charge separated state. In these nonaromatic mutants the rate of VF electron transfer from cytochrome to P+ is nearly temperature-independent between 294 K and 8 K, remaining very fast at very low temperatures (123 ns at 60 K for M; 251 ns at 40 K for L; 190 ns at 8 K for G, and 458 ns at 8 K for T). In all cases, a decrease in amplitudes of the fast phases is paralleled by an increase in very slow reduction of P+, presumably by back-reaction with Q(A)-. The significance of these results is discussed in relation to electron transfer theories and to freezing at low temperatures of cytochrome structural reorganization.  相似文献   

12.
The effect of Zn2+ on the rates of electron transfer and of voltage generation in the cytochrome bc1 complex (bc1) was investigated under excitation of Rhodobacter capsulatus chromatophores with flashing light. When added, Zn2+ retarded the oxidation of cytochrome b and allowed to monitor (at 561-570 nm) the reduction of its high potential heme b(h) (in the absence of Zn2+ this reaction was masked by the fast re-oxidation of the heme). The effect was accompanied by the deceleration of both the cytochrome c(1) reduction (as monitored at 552-570 nm) and the generation of transmembrane voltage (monitored by electrochromism at 522 nm). At Zn2+ <100 microM the reduction of heme b(h) remained 10 times faster than other reactions. The kinetic discrepancy was observed even after an attenuated flash, when bc1 turned over only once. These observations (1) raise doubt on the notion that the transmembrane electron transfer towards heme b(h) is the main electrogenic reaction in the cytochrome bc1 complex, (2) imply an allosteric link between the site of heme b(h) oxidation and the site of cytochrome c1 reduction at the opposite side of the membrane, and (3) indicate that the internal redistribution of protons might account for the voltage generation by the cytochrome bc1 complex.  相似文献   

13.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

14.
We have developed a simple and sensitive method to detect microbial respiration at subzero temperatures. Microbial activity was detected by measuring (14)CO(2) evolved during the microbial-mediated mineralization of [1-(14)C] acetic acid or [2-(14)C] glucose in microcosm assays using modified (14)CO(2) traps. Various (14)CO(2) traps, designed to withstand freezing at subzero temperatures, were tested for their quench characteristics during liquid scintillation spectrometry and their ability to trap (14)CO(2). Solutions consisting of 1 M KOH supplemented with 20% or 30% v/v ethylene glycol did not freeze at temperatures above -20 degrees C and had a minor quenching effect on liquid scintillation spectrometry. Addition of ethylene glycol did have an effect on the efficiency of (14)CO(2) trapping, as the cumulative recovery of (14)CO(2) was reduced by 14% and 32% in the 1 M KOH+20% ethylene glycol and 1 M KOH+30% ethylene glycol solutions, respectively. Using the modified (14)CO(2) traps, microbial activity in representative Canadian high Arctic environmental samples was detected at temperatures as low as -15 degrees C. This simple method allows for sensitive, specific, and reliable detection of microbial activity occurring at subzero temperatures and is readily adaptable for studies in other cryoenvironments.  相似文献   

15.
Microcoulometric analysis of trimethylamine dehydrogenase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Trimethylamine dehydrogenase, which contains one covalently bound 6-S-cysteinyl-FMN and one Fe4S4 cluster per subunit of molecular mass 83,000 Da, was purified to homogeneity from the methylotrophic bacterium W3A1. Microcoulometry at pH 7 in 50 mM-Mops buffer containing 0.1 mM-EDTA and 0.1 M-KCl revealed that the native enzyme required the addition of 3 reducing equivalents per subunit for complete reduction. In contrast, under identical conditions the phenylhydrazine-inhibited enzyme required the addition of 0.9 reducing equivalent per subunit with a midpoint potential of +110 mV. Least-squares analysis of the microcoulometric data obtained for the native enzyme, assuming uptake of 1 electron by Fe4S4 and 2 electrons by FMN, indicated midpoint potentials of +44 mV and +36 mV for the FMN/FMN.- and FMN.-/FMNH2 couples respectively and +102 mV for reduction of the Fe4S4 cluster.  相似文献   

16.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

17.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

18.
《BBA》1985,807(2):134-142
Chromatophores of the purple sulfur bacterium Chromatium vinosum were shown to contain a cytochrome similar to cytochrome c1 and two b cytochromes. Cytochrome b can be accumulated in the reduced form upon illumination at an ambient redox potential of +415 mV in the presence of the electron transport inhibitors antimycin A or HOQNO. The reductions of cytochrome b, of the high-potential cytochrome c555 and of the primary electron donor P-870 are all inhibited by myxothiazol. Dark-adapted C. vinosum chromatophores show little cytochrome b reduction on the first flash. Considerable cytochrome b reduction (1 cytochrome b:8 P-870 present) is observed on the second flash. This observation and the 1:1 stoichiometry observed between cytochrome b reduction and P-870+ reduction after the second flash support a Q-cycle model for cyclic electron flow in C. vinosum.  相似文献   

19.
Carbon monoxide rebinding to isolated fully reduced cytochrome c oxidase has been investigated by low-temperature, flash photolysis, dual-wavelength spectrometry. By using separately different wavelength pairs to monitor the liganding of CO to Fe a3 and by keeping all other experimental conditions identical, there has been singled out a photoactivation effect on CO rebinding. For instance, at 187 K, the rate constant of CO rebinding observed at 425-475 nm was twice that derived from the kinetic at 444-475 nm despite a rate constant of photodissociation about 10 times larger at 425-475 nm than at 444-475 nm. This new finding is discussed with respect to previous investigations under similar conditions.  相似文献   

20.
Heme reduction of ferric lactoperoxidase (LPO) into its ferrous form initially leads to the accumulation of the unstable form of LPO-Fe(II), which spontaneously converts to a more stable species, the two of which can be identified by Soret peaks at 440 and 434 nm, respectively. Our data demonstrate that both LPO-Fe(II) species are capable of binding O(2) at a similar rate to generate the ferrous-dioxy complex. Its formation with respect to O(2) was first order and monophasic and with rate constants of k(on) = 3.8 x 10(4) m(-1) s(-1) and k(off) = 11.2 s(-1). The dissociation rate constant for the formation of LPO-Fe(II)-O(2) is relatively high, in contrast to hemoprotein model compounds. This high dissociation rate can be attributed to a combination of effects that include the positive trans effect of the proximal ligand, the heme pocket environment, and the geometry of the Fe-O(2) linkage. Our results have also shown that the decay of the LPO-Fe(II)-O(2) complex occurs by two sequential O(2)-independent steps. The first step involves formation of a short-lived intermediate that can be characterized by its Soret absorption peak at 416 nm and may be attributed to the weakening of the Fe(II)-O(2) linkage with a rate constant of 0.5 s(-1). The second step is spontaneous conversion of this intermediate to generate the native enzyme and presumably superoxide as end products with a rate constant of 0.03 s(-1). A comprehensive kinetic model that links LPO-Fe(II)-O(2) complex formation to the LPO catalase-like activity, combined with the classic catalytic cycle, is presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号