首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub‐Antarctic islands represent critical breeding habitats for land‐based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub‐Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; “island mass effect”; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long‐term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long‐term decline in enhanced phytoplankton productivity at the islands in response to a climate‐driven shift in the position of the sub‐Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore‐feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore‐feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.  相似文献   

2.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

3.
Zooplankton abundance and biomass were determined during January 1990 at two stations to the north-west of South Georgia using a Longhurst Hardy Plankton Recorder (LHPR). At both shelf and oceanic station sites, zooplankton biomass, (excluding Euphausia superba), was found to be ca. 13 g dry mass m–2. Copepods and small euphausiids dominated the catches. These estimates are over 4 times higher than values generally reported for the Southern Ocean and may reflect firstly, the high productivity of the study area, secondly, the time of year, summer, when biomass for many species is maximal, and thirdly, the high sampling efficiency of the LHPR. Principal components analysis disclosed similarities and differences between adjacent depth strata in terms of abundance, biomass and species composition. At both stations most variability occurred in the mixed layer (0–60 m) and thermocline (60–120 m) with depth horizons below this being more homogeneous. Diel migrations were observed for most taxa with abundance increasing in the mixed layer at night. At the oceanic station, species and higher taxa belonging to the mesopelagic community were generally well spread throughout this domain and, with the exception of Pleuromamma robusta and Metridia curticauda, showed little evidence of migration. The grazing impact of the epipelagic community (copepods and small euphausiids) was estimated to remove 3–4% of the microbial standing stock day–1 and a conservative 25% and 56% of daily primary production at the oceanic and shelf stations respectively.  相似文献   

4.
Summary Fifty-seven species of oceanic micronekton and macrozooplankton were collected under pack ice during the winter in the vicinity of the Weddell-Scotia Confluence with a modified opening-closing Tucker trawl. The majority of the 57 species did not vertically migrate and lived deeper during the winter than during the spring or fall. However, despite the short day length, several of the most common mesopelagic fish and crustaceans did migrate. Fish moved into shallower depths at night but apparently most did not continue into the near-freezing upper mixed layer, leaving that zone to the migratory crustaceans. In the upper 1000 m, the dominant species were, in order of decreasing biomass, Euphausia superba, the cnidarian Atolla wyvillei, the ctenophore Beroe sp., and the mesopelagic fish Electrona antarctica, Bathylagus antarcticus and Gymnoscopelus braueri. Thysanoessa macrura and Salpa thompsoni were biomass subdominants. The majority of the dominant species showed little seasonal differences in biomass. However, the biomass of gelatinous species varied considerably with A. wyvillei and Beroe sp. being most abundant and S. thompsoni least abundant during the winter. Incidence of food in the stomachs in several important species was low, suggesting a low impact on their Zooplankton prey. Specimens of S. thompsoni had high quantities of food in their guts but this species was uncommon so its net impact would also have been low. Euphausia superba and the three common mesopelagic fish had significantly lower stomach fullness ratings during the winter than during the fall, suggesting an overall decrease in feeding activity of dominant species during the winter.  相似文献   

5.
Mesozooplankton abundance, body area spectrum, biomass, gut fluorescence and electron transfer system (ETS) activity were studied in the Antarctic Peninsula during the post-bloom scenario in these waters. Values of abundance and biomass were rather low and decreased sharply from the slope waters to the coastal area. In contrast, specific gut fluorescence and ETS activity were high in the coastal area and decreased through the shelf-break. Large copepods were very scarce, similarly to the post-bloom conditions in phytoplankton where large cells are not abundant and small cells such as flagellates dominate the water column. The vertical distribution showed two well defined layers by day, one at the surface which corresponded to krill organisms and a second at depth (>300 m) formed mainly by the large copepod Metridia gerlachei. During the short night, this layer ascended at the time that krill at the surface migrated to deeper waters as observed from acoustics and net sampling. This observation and the absence of large copepods over the shelf suggest that krill consumption on large phytoplankton cells during the bloom is followed by an increase in predation upon mesozooplankton. It also suggests that krill decrease the abundance and biomass of mesozooplankton over the shelf and continues their predation upon mesopelagic copepods during the post-bloom in Antarctic waters. This behaviour could explain the long ago described impoverishment in mesozooplankton south of the Antarctic Circumpolar Current.  相似文献   

6.
Net sampling and continuous acoustic measurements within the Antarctic Polar Frontal Zone (APFZ) and in the vicinity of the Prince Edward Islands were conducted during austral autumn (April/May) 1997 to describe the composition and distribution of macrozooplankton and micronekton, and to investigate their relations to the prevailing oceanographic regime in the area. Two major circulation patterns associated with the Subantarctic (SAF) and Antarctic Polar (APF) Fronts existed in the oceanic environment surrounding the Prince Edward Islands, promoting high cross-frontal mixing both upstream and downstream of the islands. Average abundance and biomass of macroplankton/micronekton in the top 300-m layer were 21 ind. 1000 m−3 and 467 mg DW 1000 m−3, respectively. Pelagic crustaceans (euphausiids and amphipods), fish, chaetognaths and gelatinous zooplankton dominated numerically and by biomass. Continuous acoustic measurements displayed elevated pelagic biomass at the SAF and APF. Although four groupings of stations were identified using cluster analysis, a single macroplankton/micronekton community was recognized in the top 300-m layer throughout the offshore area of the APFZ. A modification of the APFZ community was observed within the inter-island region. Subantarctic species dominated zooplankton samples throughout the APFZ, although subtropical species were also well represented at stations occupied in the northern region of the APFZ. A biological response reflected in macroplankton community composition, resulting from an extensive cross-frontal mixing, was observed within the APFZ around the Prince Edward Islands. Accepted: 27 November 1999  相似文献   

7.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

8.
John Jaenike 《Oecologia》1978,36(3):327-332
Summary Species of the Drosophila affinis subgroup show a positive correlation between population density and island area on islands in the vicinity of Deer Isle, Maine. The low density of flies on small islands may be due to inbreeding depression, exposure to salt spray, desiccation, or decimation by violent storms. Mushroom-feeding species of Drosophila show great year to year fluctuations in abundance on these islands, probably due to changes in the level of their resource supply. Population fluctuations and non-linear correlations between island area and population size may have complicating effects on the probability of extinction of species on different sized islands.  相似文献   

9.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

10.
The Antarctic shelf fauna is isolated from other continental shelf faunas both physically by distance, and oceanographically by the Antarctic circumpolar current (ACC). To elucidate the relative importance of these two isolating mechanisms, we used the seastar fauna of the south-Atlantic sub-Antarctic islands to address the hypothesis that the ACC is dominant in controlling the distribution pattern of Antarctic fauna. We expected that seastar faunas from islands on the high latitude side of the ACC would show more similarities to each other than to faunas from islands on the low latitude side. The alternative isolation by distance model predicted that the island furthest from others would have the most unique fauna. For shelf-depth (<500 m) Asteroidea of the Scotia Arc region, assemblages were more similar between islands on each side of the ACC barrier than islands that were closer together, and this pattern was caused by differences in abundance of a few ubiquitous species.  相似文献   

11.
Two processes are thought to generate positive relationships between species richness and island area. The areaper se hypothesis states that larger islands maintain larger populations, which are less susceptible to extinction. The habitat hypothesis states that larger islands contain more habitats, and therefore a greater number of habitat specialists. However, the importance of each mechanism is debated. I tested the areaper se and habitat hypotheses by comparing relationships between plant abundance, age and island area in five shrub species on islands off the coast of British Columbia, Canada. Results showed that two shrub species increased in both abundance and age with island area. The remaining three species showed no differences in abundance and age with island area. Conifer abundances increased with island area, which generated differences in habitat availability. Smaller islands were dominated by open habitat, while larger islands contained both open and forested habitats. Changes in habitat availability with island area could explain patterns in plant abundance and age. The two species that increased in abundance with island area were commonly found in conifer forest on the mainland, and their distributions were consistent with the distribution forest habitat. Positive relationships between plant age and island area in these two species may result from lower survivorship in the open habitat, which dominated small islands. The three species that showed no relationship between abundance and island area are commonly found in open habitat on the mainland, and their island distributions paralleled the availability of open habitat on islands. Similar plant ages on different sized islands may result from their occurrence in open habitat on both large and small islands. Overall results support the habitat hypothesis and indicate that species distributions result from the interaction between habitat affinities and changes in habitat availability with island area.  相似文献   

12.
Summary Zooplankton was sampled with RMT (1+8) gear on a synoptic grid of stations centred on South Georgia during the austral summer (November/December 1981) and winter (July/August 1983). This initial paper compares zooplankton biomass, vertical distribution and species composition from RMT 1 catches in the oceanic portion of the grid (water depth greater than 2000 m) during the two surveys. In the winter survey, mean zooplankton biomass within the top 1000 m of the water column was 68% of its summer level. This drop was largely due to a decrease in abundance of krill (Euphausia superba), although biomass of copepods and remaining zooplankton also decreased. Copepods averaged 48% of total biomass in summer and winter, but outnumbered all other taxa put together by a factor of 10. Antarctic epipelagic species predominated around the island in the summer survey but tended to be replaced by sub-Antarctic or cosmopolitan species during the winter survey. The majority of zooplankton also showed a downwards seasonal migration out of the top 250 m layer in winter. However, several epipelagic species, including E. superba, did not migrate, and these tended to have the largest summer-winter differences in overall abundance. These trends were attributed to variation in the position of the Polar Front, which lay north of the island during the summer survey but lay across the survey area in winter, resulting in a greater influence of sub-Antarctic water and the displacement of Antarctic species.  相似文献   

13.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

14.
Summary This paper presents an analysis of zooplankton net sampling surveys carried out during four expeditions to the Antarctic Peninsula region. Cluster analysis documented two to three site groupings for the epipelagic zone and one mesopelagic site cluster below 200 to 300 m depth. Analysis of species dominance, constancy, diversity and evenness indices did not allow clear designation and separation of communities in terms of these parameters.Computation of a rank correlation matrix for each season allowed the characterization of species groups. There were no perfect indicator species in the very strict sense. The main differences in the composition of the zooplankton between the site clusters were due mainly to changes in abundance rather than to presence or absence of particular species. However, the interpretation of the complex species and site groupings led to the conclusion that we can define three distinct communities: an oceanic, a neritic, and a mesopelagic community beneath 200 to 300 m. A so-called transitional cluster represents a mixing zone created by frequent occurrence of species from both the oceanic and neritic community. The location of the described oceanic and neritic community sites seem to be relatively stable with minor latitudinal changes during the seasons, while occurrence and abundance of most species changes with the time of the year. The usefulness of particular species (e.g. Euphausia superba) as indicator species also change during the year  相似文献   

15.
Summary Short-term variations in the micro-, meso- and macrozooplankton communities at shelf and offshore stations in the vicinity of the Price Edward Islands were examined during April/May 1985 and 1986. Microzooplankton was dominated by copepod nauplii. Other holoplanktonic groups were represented in large numbers, while meroplanktonic larvae of benthic invertebrates were very scarce despite the large benthic population of the island shelf. Copepods dominated in terms of numerical abundance the meso- and macrozooplankton assemblage but cuphausiids were also very important in terms of biomass contribution. Dirunal vertical migrations were most pronounced for the euphausiids and the copepod Metridia gerlachei. The copepods Eucalanus longipes, Rhincalanus gigas and Microsetella sp. showed significant, but lesser, diurnal vertical migrations. A daylight decrease in zooplankton biomass was observed consistently on the island shelf, compared to the pattern found in deep-water. Data from daytime tows collected during April/May 1983 show that zooplankton biomass in the area increases with depth up to a stability level of about 50 mg/m3 (dry weight). It is suggested that an interaction between vertical migrations, surface Ekman drift and bottom topography results in zooplankton mass depletion by visual predators during daytime and replenishment during the night. The nocturnal advection of allochtonous zooplankton into the area may represent an input of food supply equivalent to as much as 2.2 times the local maximum phytoplankton production.  相似文献   

16.
Batesian mimicry is a well‐studied adaptation for predation avoidance, in which a mimetic species resembles an unpalatable model species. Batesian mimicry can be under positive selection because of the protection gained against predators, due to resemblance to unpalatable model species. However, in some mimetic species, nonmimetic individuals are present in populations, despite the benefits of mimicry. The mechanism for evolution of such mimetic polymorphism remains an open question. Here, we address the hypothesis that the abundance of mimics is limited by that of the models, leading to mimetic polymorphism. In addition, other forces such as the effects of common ancestry and/or isolation by distance may explain this phenomenon. To investigate this question, we focused on the butterfly, Papilio polytes, that exhibits mimetic polymorphism on multiple islands of the Ryukyus, Japan, and performed field surveys and genetic analysis. We found that the mimic ratio of P. polytes was strongly correlated with the model abundance observed on each of the five islands, suggesting negative frequency‐dependent selection is driving the evolution of polymorphism in P. polytes populations. Molecular phylogenetic analysis indicated that the southern island populations are the major source of genetic diversity, and the middle and northern island populations arose by relatively recent migration. This view was also supported by mismatch distribution and Tajima's D analyses, suggesting a recent population expansion on the middle and northern islands, and stable population persistence on the southern islands. The frequency of the mimetic forms within P. polytes populations is thus explained by variations in the model abundance rather than by population structure. Thus, we propose that predation pressure, rather than neutral forces, have shaped the Batesian mimicry polymorphism in P. polytes observed in the Ryukyus.  相似文献   

17.
Summary Fourteen species of the genus Euchaeta (Copepoda: Calanoida) were encountered during two cruises undertaken around South Georgia during November–December 1981 (Summer) and July–August 1983 (Winter). All 14 species were present in summer but only nine in winter. The distribution of the majority of species centered on the mesopelagic (500–1000 m) and bathypelagic (1000–2000 m) depth horizons. During both cruises, four species, Euchaeta Antarctica, E. biloba, E. rasa and E. farrani were numerically dominant. Although all four species had a wide depth distribution, E. Antarctica and E. biloba had distributions centered around the 250–500 m (epi-mesopelagic) and mesopelagic depth horizons. E. rasa was most abundant in the mesopelagic whereas E. farrani, the largest species encountered, was centered on the mesopelagic and bathypelagic depth horizons. Two species, E. Antarctica and E. biloba commonly occurred in the surface 250 m, the former being far more abundant especially over the shelf and shelf break areas, with a high abundance of copepodite stages IV and V being present in summer and adults in winter.  相似文献   

18.
Aim We consider three hypotheses – MacArthur and Wilson’s island biogeography theory (IBT), Lack’s habitat diversity idea and the ‘target effect’– that explain the pattern of decreased species richness on small and distant islands. Location We evaluate these hypotheses using a detailed dataset on the occurrence and abundance of terrestrial birds on nine islands off the coast of Britain and the Republic of Ireland. Methods  Unlike previous studies, we compile data on species that visit the islands, rather than just those that breed on them. We divided the species into five mutually exclusive categories based upon their migratory status and where they regularly breed: British residents, summer visitors to Britain, winter visitors to Britain, and vagrants from Europe or beyond Europe. For each species group on each island we calculated the average number of species visiting each year. We then regressed the average number of species against island area and distance to the mainland (all variables were log‐transformed). We also compared the average number of species visiting each island with the average number of species breeding on each island. Results  Average number of visiting British residents decreased significantly with increasing island distance, but showed no relationship with island area. There was no significant relationship between island area or island distance and average number of summer or winter visitors. European and non‐European vagrants likewise showed no relationship between numbers of species visiting and island distance. However, the relationship between island area and number of visiting species was significant for both these categories; as island area increases so too does the number of visiting species. Main conclusions  As predicted by IBT, there were fewer visiting species on more distant islands. There were substantially more visitors to each island than breeding species, supporting Lack’s argument that lower bird richness is not a result of varying immigration rates (as predicted by IBT) but rather a result of some other island property, e.g. fewer resources. Birds make a decision to either leave an island or stay and breed. The target effect was also clearly demonstrated by the increase in European and non‐European breeders with increasing island size.  相似文献   

19.
Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.  相似文献   

20.
Alien species have many negative effects on insular ecosystems worldwide. We investigated Ilex canariensis post-dispersal seed predation by introduced rats (Rattus spp.) in relict forests of the Canary Islands at different spatial scales: among microhabitats within the same forest, among forest types within the same island, and among different islands of the archipelago. Seed predation intensity was very high (>70%) in all cases considered, irrespective of the spatial scale. We did not find significant differences between forest interior, edges or gaps, as well as between different forest types in four islands of the archipelago. Comparatively low predation intensity was found in El Hierro island, where more than 50% of the seeds survived at the end of the experiment, while highest seed predation was observed in Tenerife island. It is concluded that post-dispersal seed predation by rats, due to its extent and intensity, could have an important effect on Ilex canariensis recruitment, especially in successional areas where this light tolerant tree can naturally establish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号