首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA干扰在疾病治疗方面的应用研究   总被引:1,自引:0,他引:1  
褚亮  刘新垣 《生命科学》2007,19(2):117-121
RNA干扰是由双链RNA引起的序列特异的基因沉默现象。由于RNA干扰能在细胞组织及动物模型中沉默疾病相关基因,因此,RNA干扰也是各种疾病治疗的有效手段。在哺乳动物细胞内诱导RNA干扰可以通过导入小干扰RNA(siRNA),或是以质粒、病毒为载体表达短的发夹RNA(shRNA)而实现。本文介绍了RNA干扰在疾病治疗方面的应用,并就其面临的挑战进行讨论。  相似文献   

2.
In vivo gene silencing in Plasmodium berghei--a mouse malaria model   总被引:3,自引:0,他引:3  
RNA interference (RNAi) has emerged as a specific and efficient tool to silence gene expression in a variety of organisms and cell lines. An important prospect for RNAi technology is its possible application in the treatment of diseases using short interfering RNAs (siRNAs). However, the effect of siRNAs in adult animals and their potential to treat or prevent diseases are yet to be fully investigated. The main goal of the present study is to find out whether it was possible to carry out RNAi on circulating malaria parasite in vivo. To trigger RNAi in mouse malaria parasite, we used siRNAs corresponding to cysteine protease genes of Plasmodium berghei (berghepain-1 & 2). Intravenous injections of berghepains' siRNAs in infected animal resulted in characteristic enlargement of food vacuole in circulating parasites. Protein analysis of these treated parasites showed substantial accumulation of hemoglobin, which is reminiscent of the effect observed upon treating Plasmodium falciparum with different cysteine protease inhibitors. Parasites treated with berghepain 1 & 2 siRNAs showed marked reduction in the levels of their cognate mRNAs, thereby suggesting specific inhibition of berghepains' gene expression in vivo. We also observed the generation of approximately 25 nt RNA species from berghepains' mRNAs in the treated parasites, which is a characteristic of an RNAi phenomenon. These results thus provide evidence that beyond its value for validation of gene functions, RNAi may provide a new approach for disease therapy.  相似文献   

3.
Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response.  相似文献   

4.
5.
6.
RNA干涉技术   总被引:24,自引:0,他引:24  
RNA干涉(RNAi)技术是利用一些小的双链RNA来高效、特异地阻断体内特定基因的表达,并促使mRNA降解,从而诱使细胞表现出特定基因缺失的表型。本从RNAi技术的历史、作用机制、研究策略、研究现状及应用前景等几个方面进行了综述,预测RNAi将会给基因治疗的发展带来新的希望。  相似文献   

7.
On the role of RNA amplification in dsRNA-triggered gene silencing.   总被引:155,自引:0,他引:155  
We have investigated the role of trigger RNA amplification during RNA interference (RNAi) in Caenorhabditis elegans. Analysis of small interfering RNAs (siRNAs) produced during RNAi in C. elegans revealed a substantial fraction that cannot derive directly from input dsRNA. Instead, a population of siRNAs (termed secondary siRNAs) appeared to derive from the action of a cellular RNA-directed RNA polymerase (RdRP) on mRNAs that are being targeted by the RNAi mechanism. The distribution of secondary siRNAs exhibited a distinct polarity (5'-->3' on the antisense strand), suggesting a cyclic amplification process in which RdRP is primed by existing siRNAs. This amplification mechanism substantially augments the potency of RNAi-based surveillance, while ensuring that the RNAi machinery will focus on expressed mRNAs.  相似文献   

8.
RNA interference in infectious tropical diseases   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.  相似文献   

9.
Activation of the interferon system by short-interfering RNAs   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a powerful tool used to manipulate gene expression or determine gene function. One technique of expressing the short double-stranded (ds) RNA intermediates required for interference in mammalian systems is the introduction of short-interfering (si) RNAs. Although RNAi strategies are reliant on a high degree of specificity, little attention has been given to the potential non-specific effects that might be induced. Here, we found that transfection of siRNAs results in interferon (IFN)-mediated activation of the Jak-Stat pathway and global upregulation of IFN-stimulated genes. This effect is mediated by the dsRNA-dependent protein kinase, PKR, which is activated by 21-base-pair (bp) siRNAs and required for upregulation of IFN-beta in response to siRNAs. In addition, we show by using cell lines deficient in specific components mediating IFN action that the RNAi mechanism itself is independent of the interferon system. Thus, siRNAs have broad and complicating effects beyond the selective silencing of target genes when introduced into cells. This is of critical importance, as siRNAs are currently being explored for their potential therapeutic use.  相似文献   

10.
RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.  相似文献   

11.
12.
13.
RNA interference (RNAi) is a process in which double-strand RNA (dsRNA) directs the specific degradation of a corresponding target mRNA. The mediators of this process are small dsRNAs, of ~21 bp in length, called small interfering RNAs (siRNAs). siRNAs, which can be prepared in vitro in a number of ways and then transfected into cells, can direct the degradation of corresponding mRNAs inside these cells. Hence, siRNAs represent a powerful tool for studying gene functions, as well as having the potential of being highly specific pharmaceutical agents. Some limitations in using this technology exist because the preparation of siRNA in vitro and screening for siRNAs efficient in RNAi can be expensive and time-consuming processes. Here, we demonstrate that custom oligonucleotide arrays can be efficiently used for the preparation of defined mixtures of siRNAs for the silencing of exogenous and endogenous genes. The method is fast, inexpensive, does not require siRNA optimization and has a number of advantages over methods utilizing enzymatic preparation of siRNAs by digestion of longer dsRNAs, as well as methods based on chemical synthesis of individual siRNAs or their DNA templates.  相似文献   

14.
15.
RNA interference: The molecular immune system   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into cells expressing a homologous gene triggers RNA interference (RNAi), or RNA-based gene silencing (RBGS). The dsRNA degrades corresponding host mRNA into small interfering RNAs (siRNAs) by a protein complex containing Dicer. siRNAs in turn are incorporated into the RNA-induced silencing complex (RISC) that includes helicase, RecA, and exo- and endo-nucleases as well as other proteins. Following its assembly, the RISC guides the RNA degradation machinery to the target RNAs and cleaves the cognate target RNA in a sequence-specific, siRNA-dependent manner. RNAi has now been documented in a wide variety of organisms, including plants, fungi, flies, worms, and more recently, higher mammals. In eukaryotes, dsRNA directed against a range of viruses (i.e., HIV-1, RSV, HPV, poliovirus and others) and endogenous genes can induce sequence-specific inhibition of gene expression. In invertebrates, RNAi can be efficiently triggered by either long dsRNAs or 21- to 23-nt-long siRNAs. However, in jawed vertebrates, dsRNA longer than 30 bp can induce interferon and thus trigger undesirable side effects instead of initiating RNAi. siRNAs have been shown to act as potent inducers of RNAi in cultured mammalian cells. Many investigators have suggested that siRNAs may have evolved as a normal defense against endogenous and exogenous transposons and retroelements. Through a combination of genetic and biochemical approaches, some of the mechanisms underlying RNAi have been described. Recent data in C. elegans shows that two homologs of siRNAs, microRNAs (miRNAs) and tiny noncoding RNAs (tncRNAs) are endogenously expressed. However, many aspects of RNAi-induced gene silencing, including its origins and the selective pressures which maintain it, remain undefined. Its evolutionary history may pass through the more primitive immune functions of prokaryotes involving restriction enzymes that degrade plasmid DNA molecules that enter bacterial cells. RNAi has evolved further among eukaryotes, in which its wide distribution suggests early origins. RNAi seems to be involved in a variety of regulatory and immune functions that may differ among various kingdoms and phyla. We present here proposed mechanisms by which RBGS protects the host against endogenous and exogenous transposons and retroelements. The potential for therapeutic application of RBGS technology in treating viral infections such as HIV is also discussed.  相似文献   

16.
Coxsackievirus B3 (CVB-3) is a plus-strand RNA virus that is believed to be the most common causal agent of viral myocarditis. Since no specific treatment for CVB-3 infections is available to date, we and others have recently started to develop RNA interference (RNAi) approaches to prevent virus propagation. Here we describe our strategy for the development of efficient small interfering RNAs (siRNAs) against viral genomes. Initially, fusion constructs of a reporter (green fluorescent protein) and viral subgenomic fragments were employed to select active siRNAs against the virus. Moreover, in an attempt to achieve sustained virus silencing and reduce the risk of generating escape mutants, only highly efficient siRNAs directed against regions of the viral genome that are unlikely to tolerate mutations were considered for virus inhibition. Two siRNAs directed against the 3D RNA-dependent RNA polymerase were found to inhibit virus propagation by 80-90%. The protective effect of the efficient siRNAs lasted for several days. Furthermore, we have first evidence that inhibition of the cellular coxsackievirus-adenovirus receptor (CAR) by RNAi also reduces the virus titre. Our strategy is likely to be applicable to other (RNA) viruses as well.  相似文献   

17.
《Fly》2013,7(4):337-339
Mutations and most transgenes that induce ectopic cell death in Drosophila will produce an inhibitory effect on RNA interference (RNAi) in adjacent cells. When extensive cell death is sporadically induced using a heat shock promoted-head involution defective (hs-hid) transgene, molecular attributes of this inhibition can be studied. For a Green Fluorescent Protein (GFP) RNAi construct, cell death causes a greater accumulation of the mature mRNA and the double stranded RNA with an accompanying reduction in the homologous siRNAs. Endogenous transposable element expression is increased and there is an overall reduction in their corresponding siRNAs. The implications of this finding for the conduct of RNAi and potential reasons for its existence are discussed.  相似文献   

18.
RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.  相似文献   

19.
The frequent disease outbreaks caused by avian influenza virus (AIV) not only affect the poultry industry but also pose a threat to human safety. To address the problem, RNA interference (RNAi) has recently been widely used as a potential antiviral approach. Transgenesis, in combination with RNAi to specifically inhibit AIV gene expression, has been proposed to make chickens resistant to avian influenza. For the transgenic breeding, screening the efficient siRNAs in vitro as the candidate genes is one of the most important tasks. Here, we combined an online search tool and a series of bioinformatics programs with a set of rules for designing the siRNAs targeting different mRNA regions of AIV H5N1 subtype. By this method we chose five rational siRNAs, constructed five U6 promoter-driven shRNA expression plasmids contained the siRNA genes, and used these to produce stably transfected Madin-Darby canine kidney (MDCK) cells. Data from virus titration, IFA, PUI-stained flow cytometry, real-time quantitative RT-PCR and DAS-ELISA analyses showed that all five stably transfected cell lines were effectively resistant to viral replication when exposed to 100 CCID50 of AIV, and we finally chose the most effective plasmids (pSi-604i and pSi-1597i) as the candidates for making the transgenic chickens. These findings provide baseline information for breeding transgenic chickens resistant to AIV in combination with RNAi.  相似文献   

20.
Within the course of only the last few years, RNA interference (RNAi) has been established as a standard technology for investigation of protein function and target validation. The present review summarizes recent progress made in the application of RNAi in neurosciences with special emphasis on pain research. RNAi is a straightforward method to generate loss-of-function phenotypes for any gene of interest. In mammals, silencing is induced by small interfering RNAs (siRNAs), which have been shown to surpass traditional antisense molecules. Due to its high specificity, RNAi has the potential for subtype selective silencing of even closely related genes. One of the major challenges for in vivo investigations of RNAi remains efficient delivery of siRNA molecules to the relevant tissues and cells, particularly to the central nervous system. Various examples will be given to demonstrate that intrathecal application of siRNAs is a suitable approach to analyse the function of receptors or other proteins that are hypothesized to play an important role in pain signalling. Intensive efforts are currently ongoing to solve remaining problems such as the risk of off-target effects, the stability of siRNA molecules and their efficient delivery to the CNS. RNAi has thus demonstrated that it is an extremely valuable tool for the development of new analgesic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号