首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

2.
L.ymphocyte interactions with endothelial cells in microcirculation are an important regulatory step in the delivery of lymphocytes to peripheral sites of inflammation. In normal circumstances, the predicted wall shear stress in small venules range from 10 to 100 dyn/cm2. Attempts to measure the adhesion of lymphocytes under physiologic conditions have produced variable results, suggesting the importance of studying biologically relevant migratory lymphocytes. To quantify the effect of shear stress on these migratory lymphocytes, we used lymphocytes obtained from sheep efferent lymph ducts, defined as migratory cells, to perfuse sheep endothelial monolayers under conditions of flow. Quantitative cytomorphometry was used to distinguish cells in contact with the endothelial monolayers from cells in the flow stream. As expected, migratory cells in contact with the normal endothelial monolayer demonstrated flow velocities less than the velocity of cells in the adjacent flow stream. The flow velocities of these efferent lymphocytes were independent of cell size. To model the inflammatory microcirculation, lymphocytes were perfused over sequential endothelial monolayers to directly compare the velocity of cells in contact with cytokine-activated and unactivated control monolayers. The tumor necrosis factor and interleukin-1-activated endothelial monolayers marginally decreased cell velocities at 1.2 dyn/cm2 (3.6%), but significantly reduced cell velocities 0.3 dyn/cm2 (27.4%; P < 0.05). Similarly, the fraction of statically adherent lymphocytes decreased as shear stress increased to 1.2 dyn/cm2. These results suggest that typical wall shear stress in small venules. of the order of 20 dyn/cm2, are too high to permit adhesion and transmigration of migratory lymphocytes. Additional mechanisnis must be present in vivo to facilitate lymphocyte transmigration in the inflammatory microcircu-  相似文献   

3.
Li Q  Fang Y  Ding X  Wu J 《Experimental cell research》2012,318(14):1649-1658
E-selectin-mediated rolling on vascular surface of circulating leukocyte on vascular surface is a key initial event during inflammatory response and lymphocyte homing. This event depends not only on the specific interactions of adhesive molecules but also on the hemodynamics of blood flow. Little is still understood about whether wall shear stress or shear rate regulates the rolling. With flow chamber techniques, we here measured the effects of transport, shear stress and cell deformation on rolling of both unfixed and fixed HL-60 cells on E-selectin either in the absence or in the presence of 3% Ficoll in medium at various wall shear stresses from 0.05 to 0.7 dyn/cm(2). The results demonstrated a triphasic force-dependent rolling, that is, as increasing of force, the rolling would be accelerated firstly, then followed a decelerating phase occurred at the initial shear threshold of about 0.1 dyn/cm(2), and lastly returned to an accelerating process starting at the optimal shear threshold of 0.35 dyn/cm(2) approximately. The catch bond regime was completely reflected to rolling behaviors, such as tether lifetime, cell stop time and rolling velocity, meaning that the dominant factor to govern rolling is force. The initial shear threshold might be the minimum level of wall shear stress to sustain a stationary rolling, and the optimal shear threshold would make rolling to the most stable and regular. These findings strongly elucidate the catch bond mechanism for flow-enhanced rolling through E-selectin since longer bond lifetimes led to slower and stabler rolling.  相似文献   

4.
We develop a theoretical model to examine the combined effect of gravity and microvillus length heterogeneity on tip contact force (F(m)(z)) during free rolling in vitro, including the initiation of L-, P-, and E-selectin tethers and the threshold behavior at low shear. F (m)(z) grows nonlinearly with shear. At shear stress of 1 dyn/cm(2), F(m)(z) is one to two orders of magnitude greater than the 0.1 pN force for gravitational settling without flow. At shear stresses > 0.2 dyn/cm(2) only the longest microvilli contact the substrate; hence at the shear threshold (0.4 dyn/cm(2) for L-selectin), only 5% of microvilli can initiate tethering interaction. The characteristic time for tip contact is surprisingly short, typically 0.1-1 ms. This model is then applied in vivo to explore the free-rolling interaction of leukocyte microvilli with endothelial glycocalyx and the necessary conditions for glycocalyx penetration to initiate cell rolling. The model predicts that for arteriolar capillaries even the longest microvilli cannot initiate rolling, except in regions of low shear or flow reversal. In postcapillary venules, where shear stress is approximately 2 dyn/cm(2), tethering interactions are highly likely, provided that there are some relatively long microvilli. Once tethering is initiated, rolling tends to ensue because F(m)(z) and contact duration will both increase substantially to facilitate glycocalyx penetration by the shorter microvilli.  相似文献   

5.
Leukocyte [white blood cell (WBC)] adhesion and shedding of glycans from the endothelium [endothelial cells (ECs)] in response to the chemoattractant f-Met-Leu-Phe (fMLP) has been shown to be attenuated by topical inhibition of matrix metalloproteases (MMPs) with doxycycline (Doxy). Since Doxy also chelates divalent cations, these responses were studied to elucidate the relative roles of cation chelation and MMP inhibition. WBC-EC adhesion, WBC rolling flux, and WBC rolling velocity were studied in postcapillary venules in the rat mesentery during superfusion with the cation chelator EDTA or Doxy. Shedding and accumulation of glycans on ECs, with and without fMLP, were quantified by the surface concentration of lectin (BS-1)-coated fluorescently labeled microspheres (FLMs) during constant circulating concentration. Without fMLP, low concentrations of EDTA (1-3 mM) increased FLM-EC sequestration due to disruption of the permeability barrier with prolonged exposure. In contrast, with 0.5 μM Doxy alone, FLM adhesion remained constant (i.e., no change in glycan content) on ECs, and WBC adhesion increased with prolonged superfusion. Without fMLP, EDTA did not affect firm WBC-EC adhesion but reduced WBC rolling flux in a dose-dependent manner. With fMLP, EDTA did not inhibit WBC adhesion, whereas Doxy did during the first 20 min of superfusion. Thus, the inhibition by Doxy of glycan (FLM) shedding and WBC adhesion in response to fMLP results from MMP inhibition, in contrast to cation chelation. With either Doxy or the MMP inhibitor GM-6001, WBC rolling velocity decreased by 50%, as in the case with fMLP, suggesting that MMP inhibition reduces sheddase activity, which increases the adhesiveness of rolling WBCs. These events increase the effective leukocrit on the venular wall and increase firm WBC-EC adhesion. Thus, MMP inhibitors have both a proadhesion effect by reducing sheddase activity while exerting an antiadhesion effect by inhibiting glycocalyx shedding and subsequent exposure of adhesion molecules on the EC surface.  相似文献   

6.
Bose S  Das SK  Karp JM  Karnik R 《Biophysical journal》2010,99(12):3870-3879
Cell rolling on the vascular endothelium plays an important role in trafficking of leukocytes, stem cells, and cancer cells. We describe a semianalytical model of cell rolling that focuses on the microvillus as the unit of cell-substrate interaction and integrates microvillus mechanics, receptor clustering, force-dependent receptor-ligand kinetics, and cortical tension that enables incorporation of cell body deformation. Using parameters obtained from independent experiments, the model showed excellent agreement with experimental studies of neutrophil rolling on P-selectin and predicted different regimes of cell rolling, including spreading of the cells on the substrate under high shear. The cortical tension affected the cell-surface contact area and influenced the rolling velocity, and modulated the dependence of rolling velocity on microvillus stiffness. Moreover, at the same shear stress, microvilli of cells with higher cortical tension carried a greater load compared to those with lower cortical tension. We also used the model to obtain a scaling dependence of the contact radius and cell rolling velocity under different conditions of shear stress, cortical tension, and ligand density. This model advances theoretical understanding of cell rolling by incorporating cortical tension and microvillus extension into a versatile, semianalytical framework.  相似文献   

7.
Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.  相似文献   

8.
A mathematical model was developed to quantify the efficiency of cell-substrate attachment in the parallel-plate flow chamber. The model decouples the physical features of the system that affect cell-substrate collision rates from the biological features that influence cellular adhesivity. Thus, experimental data on cell rolling and adhesion density are converted into "frequency" parameters that quantify the "efficiency" with which cells in the flow chamber progress from the free stream to rolling, and transition from rolling to firm arrest. The model was partially validated by comparing simulation results with experiments where neutrophils rolled and adhered onto substrates composed of cotransfected cells bearing E-selectin and intercellular adhesion molecule-1 (ICAM-1). Results suggest that: 1) Neutrophils contact the E-selectin substrate on average for 4-8.5s before tethering. This contact duration is insensitive to applied shear stress. 2) At 2 dyn/cm(2), approximately 28% of the collisions between the cells and substrate result in primary capture. Also, approximately 5-7% of collisions between neutrophils in the free stream and previously recruited neutrophils bound on the substrate result in secondary capture. These percentages were higher at lower shears. 3) An adherent cell may influence the flow streams in its vicinity up to a distance of 2.5 cell diameters away. 4) Our estimates of selectin on-rate in cellular systems compare favorably with data from reconstituted systems with immobilized soluble E-selectin. In magnitude, the observed on-rates occur in the order, L-selectin > P-selectin > E-selectin.  相似文献   

9.
Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm(2) to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm(2) under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm(2) closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.  相似文献   

10.
Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
An experimental technique and a simple analysis are presented that can be used to quantitate the affinity of red blood cell membrane for surfaces of small beads or microsomal particles up to 3 micrometers Diam. The technique is demonstrated with an example of dextran-mediated adhesion of small spherical red cell fragments to normal red blood cells. Cells and particles are positioned for contact by manipulation with glass micropipets. The mechanical equilibrium of the adhesive contact is represented by the variational expression that the decrease in interfacial free energy due to a virtual increase in contact area is balanced by the increase in elastic energy of the membrane due to virtual deformation. The surface affinity is the reduction in free energy per unit area of the interface associated with the formation of adhesive contact. From numerical computations of equilibrium configurations, the surface affinity is derived as a function of the fractional extent of particle encapsulation. The range of surface affinities for which the results are applicable is increased over previous techniques to several times the value of the elastic shear modulus. It is shown that bending rigidity of the membrane has little effect on the analytical results for particles 1--3 micrometers Diam and that results are essentially the same for both cup- and disk-shaped red cells. A simple analytical model is shown to give a good approximation for surface affinity (normalized by the elastic shear modulus) as a function of the fractional extent of particle encapsulation. The model predicts that a particle would be almost completely vacuolized for surface affinities greater than or equal to 10 times the elastic shear modulus. Based on an elastic shear modulus of 6.6 x 10(-3) dyn/cm, the range for the red cell-particle surface affinity as measured by this technique is from approximately 7 x 10(-4) to 7 x 10(-2) erg/cm2. Also, an approximate relation is derived for the level of surface affinity necessary to produce particle vacuolization by a phospholipid bilayer surface which possesses bending rigidity and a fixed tension.  相似文献   

12.
Tethering and rolling of circulating leukocytes on the surface of endothelium are critical steps during an inflammatory response. A soft solid cell model was proposed to study monocytes tethering and rolling behaviors on substrate surface in shear flow. The interactions between monocytes and micro-channel surface were modeled by a coarse-grained molecular adhesive potential. The computational model was implemented in a Lagrange-type meshfree Galerkin formulation to investigate the monocyte tethering and rolling process with different flow rates. From the simulation results, it was found that the flow rate has profound effects on the rolling velocity, contact area and effective stress of monocytes. As the flow rate increased, the rolling velocity would increase linearly, whereas the contact area and average effective stress in monocyte showed nonlinear increase.  相似文献   

13.
The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2.  相似文献   

14.
We consider the steady fluid forces acting on a thrombus from the time of first contact of a single cell with a natural or artificial surface, through the attachment process and growth to embolization. For a hemi-spherical or cylindrical attached cell of height less than 1/100-1/20th of the channel width, shear and tensile stresses are solely dependent on viscosity and on the ratio of average fluid velocity to channel width vt/Dt (shear rate). Large values of this ratio reduce adhesion and increase embolization. The average shear stress on such cells is approximately 1-10 Pa (10-100 dyn cm2), the average tensile stress about three times higher. For other shapes and larger protrusions, stress varies with protrusion height as well. Maturing thrombi composed of cell aggregates embedded in a fibrin mesh do not appear to allow significant fluid flow through their porous structure. The interior forces are then due solely to hydrostatic pressure and initially vary directly with vt/Dt and inversely with thrombus height Hp, thus favouring embolization at an early stage and in arterial systems. Rough surfaces are identified as causing an increase in dwell-time and possibly immobilizing an unattached cell due to 'negative lift'.  相似文献   

15.
Monocyte-endothelial cell adhesion is a key early event in atherogenesis. C-reactive protein (CRP), a cardiovascular risk marker, is known to stimulate ICAM and VCAM in human aortic endothelial cells (HAEC) and induces monocyte-endothelial cell adhesion. In this study, we examined the mechanisms by which native CRP promotes monocyte-endothelial cell adhesion under static conditions and tested the effect of CRP on adhesion under shear flow. Incubation of HAEC with CRP (>25 microg/ml) upregulated NF-kappaB activity, and this resulted in a significant increase in ICAM (54% increase, P<0.001), VCAM (41% increase, P<0.01), and monocyte-endothelial cell adhesion (44% increase, P<0.02) compared with those of control. Preincubation with antibodies to CD32 and CD64 but not CD16 effectively inhibited this activation. Blocking NF-kappaB activity with inhibitors or a dominant negative inhibitory kappaB significantly decreased ICAM, VCAM upregulation, and subsequent monocyte-endothelial cell adhesion. Preincubation with antibodies to CD32 and CD64 or transient transfection with small interference RNA to CD32 attenuated CRP-induced NF-kappaB activity, ICAM, VCAM, and monocyte-endothelial cell adhesion under static conditions. Also, the Syk kinase inhibitor piceatannol and MG-132, a proteasome degradation inhibitor, produced similar attenuation in NF-kappaB activity, ICAM, VCAM, and adhesion. Furthermore, CRP-activated endothelial cells supported monocyte rolling, arrest, and transmigration in shear flow (2 dyn/cm2), and this was also inhibited by preincubation with antibodies to CD32 and CD64. Thus, in HAEC, CRP upregulates monocyte-endothelial adhesion by activation of NF-kappaB through engaging the Fcgamma receptors CD32 and CD64.  相似文献   

16.
This study addressed the influence of the rate of shear stress application on aortic smooth muscle cell (SMC) contraction and the role of specific glycosaminoglycans in this mechanotransduction. Rat aortic SMCs were exposed to either a step increase in shear stress (0 to 25 dyn/cm(2)) or a ramp increase in shear stress (0 to 25 dyn/cm(2) over 5 min) in a parallel plate flow chamber, and cell contraction was characterized by cell area reduction. SMCs contracted at levels similar to those reported previously and equally in response to both a step and ramp increase in shear stress. When the cells were pretreated with heparinase III or chondroitinase ABC to remove the glycosaminoglycans heparan sulfate and chondroitin sulfate, respectively, from the glycocalyx, the contraction response to increases in shear stress was significantly inhibited. These studies indicate that specific components of the SMC glycocalyx play an important role in the mechanotransduction of shear stress into a contractile response and that the rate of application of shear stress does not affect the SMC contraction.  相似文献   

17.
A stochastic model of leukocyte rolling.   总被引:2,自引:0,他引:2       下载免费PDF全文
Y Zhao  S Chien    R Skalak 《Biophysical journal》1995,69(4):1309-1320
Selectin-mediated leukocyte rolling under flow is an important process in leukocyte recruitment during inflammation. The rolling motion of individual cells has been observed to fluctuate randomly both in vivo and in vitro. This paper presents a stochastic model of the micromechanics of cell rolling and provides an analytical method of treating experimental data. For a homogeneous cell population, the velocity distribution is obtained in an analytical form, which is in good agreement with experimentally determined velocity histograms obtained previously. For a heterogeneous cell population, the model provides a simple, analytical method of separating the contributions of temporal fluctuations and population heterogeneity to the variance of measured rolling velocities. The model also links the mean and variance of rolling velocities to the molecular events underlying the observed cellular motion, allowing characterization of the distribution and release rate of the clusters of molecular bonds that tether the cell to substratum. Applying the model to the analysis of data obtained for neutrophils rolling on an E-selectin-coated surface at a wall shear stress of 1.2 dyn/cm2 yields estimations of the average distance between bond clusters (approximately micron) and the average time duration of a bond cluster resisting the applied fluid force (approximately 0.5 s).  相似文献   

18.
There have been intensive studies on the differentiation of endothelial progenitor cells (EPCs) into endothelial cells. We investigated the endothelial differentiation of placenta-derived multipotent cells (PDMCs), a population of CD34(-)/CD133(-)/Flk-1(-) cells. PDMCs were cultured in basal media or media containing endothelial growth factors (EGM), including vascular endothelial growth factor (VEGF), for 3 days and then subjected to shear stress of 6 or 12dyn/cm(2) for 24h. Culture of PDMCs in EGM under static conditions resulted in significant increases in VEGF receptor-1 (Flt-1) and receptor-2 (Flk-1) expression. Application of shear stress at 12dyn/cm(2) to these cells led to significant increases in their expression of von Willebrand Factor and platelet-endothelial cell adhesion molecule-1 at both the gene and protein levels. Shear stress at 6dyn/cm(2) had lesser effects. Uptakes of acetylated low-density lipoproteins as well as formation of tube-like structures on Matrigel were significantly increased after subjecting to shear stress of 12dyn/cm(2) for 24h. Our findings suggest that the combined use of endothelial growth factors and high shear stress is synergistic for the endothelial differentiation of PDMCs.  相似文献   

19.
Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 microns diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 microns diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.  相似文献   

20.
A cell-scaled microbead system was used to analyze the force-dependent kinetics of P-selectin adhesive bonds independent of micromechanical properties of the neutrophil's surface microvilli, an elastic structure on which P-selectin ligand glycoprotein-1 (PSGL-1) is localized. Microvillus extension has been hypothesized in contributing to the dynamic range of leukocyte rolling observed in vivo during inflammatory processes. To evaluate PSGL-1/P-selectin bond kinetics of microbeads and neutrophils, rolling and tethering on P-selectin-coated substrates were compared in a parallel-plate flow chamber. The dissociation rates for PSGL-1 microbeads on P-selectin were briefer than those of neutrophils for any wall shear stress, and increased more rapidly with increasing flow. The microvillus length necessary to reconcile dissociation constants of PSGL-1 microbeads and neutrophils on P-selectin was 0.21 microm at 0.4 dyn/cm2, and increased to 1.58 microm at 2 dyn/cm2. The apparent elastic spring constant of the microvillus ranged from 1340 to 152 pN/microm at 0.4 and 2.0 dyn/cm2 wall shear stress. Scanning electron micrographs of neutrophils rolling on P-selectin confirmed the existence of micrometer-scaled tethers. Fixation of neutrophils to abrogate microvillus elasticity resulted in rolling behavior similar to PSGL-1 microbeads. Our results suggest that microvillus extension during transient PSGL-1/P-selectin bonding may enhance the robustness of neutrophil rolling interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号