首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A clone encoding the putative copper chaperone protein Sheep Atx1 Homologue (SAH) was isolated from a sheep liver cDNA library. The 466-bp cDNA encoded a predicted protein of 68 amino acids, with 44 and 81% amino acid identity to the yeast Atx1 and human Atox1 copper chaperone proteins, respectively. The characteristic MTCxxC and KTGK motifs were conserved in SAH. Northern blot analysis revealed an abundant 0.5-kb mRNA in all tissues examined. Elevated hepatic copper content did not affect the level of SAH mRNA in the liver. Analysis of SAH mRNA in the developing liver revealed low levels of expression in the foetal period, with a steady increase to adult levels occurring during development. In vitro two-hybrid analysis demonstrated SAH interacted with the amino terminal portion of the sheep Wilson's disease protein (ATP7B). The extent of this interaction was significantly reduced by the addition of the copper chelator bathocuproine disulfonic acid to the media. These results suggest SAH is a functional copper chaperone that is able to interact with ATP7B in a copper-dependent manner to facilitate copper transport into the secretory pathway.  相似文献   

3.
Here we report the characterization of a human mRNA encoding a novel protein denoted C1orf9 (chromosome 1 open reading frame 9). The cDNA sequence, derived from a testis cDNA library, contains 5700 bp which encodes an open reading frame of 1254 amino acids. The deduced protein contains a putative N-terminal signal peptide and one putative transmembrane region, indicating membrane localization. No significant homology was found with known characterized proteins. However, a 150 amino acid region has significant homology to deduced protein sequences from other organisms, including Caenorhabditis elegans (43% identity), Saccharomyces cerevisiae (47% identity), Schizosaccharomyces pombe (48% identity), and two proteins from Arabidopsis thaliana (42% and 40% identity), suggesting a novel family of conserved domains. The C1orf9 gene was assigned to chromosome 1q24. The gene spans approximately 78.7 kb and is organized into at least 24 exons. Expression analysis revealed a single C1orf9 mRNA species of approximately 6.0 kb with a predominant expression in pancreas and testis, and only low levels of expression in other tissues examined.  相似文献   

4.
5.
6.
Small GTP-binding proteins belonging to the Ras superfamily have been found in evolutionarily divergent organisms. Here, we report the isolation and analysis of a cDNA encoding a putative small GTP-binding protein, designated Rhn1, from the plant, Nicotiana plumbaginifolia. The 21.8-kDa protein has 60% amino acid similarity with the mammalian Rab5 proteins. The Rhn1 protein is encoded by a small multigene family. Northern analysis shows the highest steady-state mRNA levels to be in roots and flowers. Furthermore, the Rhn1 protein has 80% amino acid similarity with an Arabidopsis small GTP-binding protein, designated Rha1.  相似文献   

7.
Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed and ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.  相似文献   

8.
9.
We cloned cDNAs encoding PC1 and PC2 from a cDNA library constructed for the anterior pituitary gland of the bullfrog (Rana catesbeiana) and sequenced them. The bullfrog PC1 cDNA consisted of 2972 base pairs (bp) with an open reading frame of 2208 bp and encoded a protein of 736 amino acids, including a putative signal peptide of 26 amino acids. The protein showed a high homology to R. ridibunda PC1 (95.1%) and mammalian PC1 (72.6%). The bullfrog PC2 cDNA consisted of 2242 bp with an open reading frame of 1914 bp and encoded a protein of 638 amino acids, including a putative signal peptide of 23 amino acids. This protein showed a high homology to R. ridibunda PC2 (95.5%) and mammalian PC2 (84.8%). The catalytic triad of serine proteinases of the subtilisin family was found at Asp-168, His-209, and Ser-383 in the PC1 protein and at Asp-167, His-208, and Ser-384 in the PC2 protein. In situ hybridization staining revealed that PC2 mRNA was detected in corticotrope cells of the tadpoles, but not in those of the adults. In the adult, only PC1 mRNA was detected in the pars distalis but both PC1 and PC2 mRNAs were detected in the pars intermedia. The data also showed that PC1 mRNA was expressed in gonadotrope cells.  相似文献   

10.
11.
From the rice leaf cDNA library, we have cloned a cDNA encoding rice chloroplast translational elongation factor EF-Tu (tufA). The rice tufA cDNA clone contains 1678 nucleotides and codes for a 467 amino acid protein including a putative chloroplast transit peptide of 59 amino acid residues. The predicted molecular mass of the mature protein is approximately 45 kDa. This cDNA clone contains the 61 nucleotides of the 5' untranslated region (UTR) and the 213 nucleotides of 3' UTR. Amino acid sequence identity of the rice tufA with the mature chloroplast EF-Tu proteins of tobacco, pea, arabidopsis, and soybean ranges from 83% to 86%. The deduced polypeptide of the rice tufA cDNA contains GTP binding domains in its N-terminal region and chloroplast EF-Tu signature regions in the C-terminal region. The rice tufA appears to exist as a single copy gene, although its homologues of maize and oat exist as multiple copy genes. The rice tufA gene is located in chromosome 1 and is more highly expressed in the leaf than in root tissue.  相似文献   

12.
13.
水稻H3.2型组蛋白基因RH3.2A的克隆与盐胁迫下的表达分析   总被引:1,自引:0,他引:1  
组蛋白H3与其他类型的组蛋白分子H2A,H2B,H4共同构成了真核生物核小体的八聚体核心。研究发现组蛋白H3的多种翻译修饰,如甲基化、乙酰化、磷酸化等在调控基因转录过程种发挥了重要的作用。本研究从盐胁迫处理的水稻幼苗组织中分离了一个新的水稻组蛋白H3基因RH3.2A,编码具有136个氨基酸残基的多肽,与多种植物的组蛋白H3蛋白具有高度的氨基酸一致性。多序列比较发现,除了基因结构差异之外,还有3个位置的氨基酸残基(32、88、91)在H3.1与H3.2型组蛋白H3中存在差异。研究了RH3.2A基因在高盐和ABA胁迫下的表达,结果发现在水稻根部RH3.2A基因受高盐的强烈诱导,而在叶片RH3.2A基因的表达则不受高盐诱导,此外RH3.2A基因也受外源ABA的诱导,结合启动子分析的结果,我们认为RH3.2A基因可能参与了依赖于ABA的高盐胁迫应答反应。文章讨论了植物组蛋白H3基因在高盐胁迫应答反应中可能的作用。  相似文献   

14.
In the eucaryotic nucleus, heterogeneous nuclear RNAs exist in a complex with a specific set of proteins to form heterogeneous nuclear ribonucleoprotein particles (hnRNPs). The C proteins, C1 and C2, are major constituents of hnRNPs and appear to play a role in RNA splicing as suggested by antibody inhibition and immunodepletion experiments. With the use of a previously described partial cDNA clone as a hybridization probe, full-length cDNAs for the human C proteins were isolated. All of the cDNAs isolated hybridized to two poly(A)+ RNAs of 1.9 and 1.4 kilobases (kb). DNA sequencing of a cDNA clone for the 1.9-kb mRNA (pHC12) revealed a single open reading frame of 290 amino acids coding for a protein of 31,931 daltons and two polyadenylation signals, AAUAAA, approximately 400 base pairs apart in the 3' untranslated region of the mRNA. DNA sequencing of a clone corresponding to the 1.4-kb mRNA (pHC5) indicated that the sequence of this mRNA is identical to that of the 1.9-kb mRNA up to the first polyadenylation signal which it uses. Both mRNAs therefore have the same coding capacity and are probably transcribed from a single gene. Translation in vitro of the 1.9-kb mRNA selected by hybridization with a 3'-end subfragment of pHC12 demonstrated that it by itself can direct the synthesis of both C1 and C2. The difference between the C1 and C2 proteins which results in their electrophoretic separation is not known, but most likely one of them is generated from the other posttranslationally. Since several hnRNP proteins appeared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as multiple antigenically related polypeptides, this raises the possibility that some of these other groups of hnRNP proteins are also each produced from a single mRNA. The predicted amino acid sequence of the protein indicates that it is composed of two distinct domains: an amino terminus that contains what we have recently described as a RNP consensus sequence, which is the putative RNA-binding site, and a carboxy terminus that is very negatively charged, contains no aromatic amino acids or prolines, and contains a putative nucleoside triphosphate-binding fold, as well as a phosphorylation site for casein kinase type II. The RNP consensus sequence was also found in the yeast poly(A)-binding protein (PABP), the heterogeneous nuclear RNA-binding proteins A1 and A2, and the pre-rRNA binding protein C23. All of these proteins are also composed of at least two distinct domains: an amino terminus, which possesses one or more RNP consensus sequences, and a carboxy terminus, which is unique to each protein, being very acidic in the C proteins and rich in glycine in A1, and C23 and rich in proline in the poly(A)-binding protein. These findings suggest that the amino terminus of these proteins possesses a highly conserved RNA-binding domain, whereas the carboxy terminus contains a region essential to the unique function and interactions of each of the RNA-binding proteins.  相似文献   

15.
16.
17.
Sonoda M  Ide H  Nakayama S  Sasaki A  Kitazaki S  Sato T  Nakagawa H 《Planta》2003,216(6):961-968
The spinach ( Spinacia oleracea L. (cv. Hoyo) nitrate reductase inactivator (NRI) is a novel protein that irreversibly inactivates NR. Using degenerate primers based on an N-terminal amino acid sequence of NRI purified from spinach leaves and a cDNA library, we isolated a full-length NRI cDNA from spinach that contains an open reading frame encoding 479 amino acid residues. This protein shares 67.4% and 51.1-68.3% amino acid sequence similarities with a nucleotide pyrophosphatase (EC 3.6.1.9) from rice and three types of the nucleotide pyrophosphatase-like protein from Arabidopsis thaliana, respectively. Immunoblot analysis revealed that NRI was constitutively expressed in suspension-cultured spinach cells; however, its expression level is quite low in 1-day-subcultured cells. Moreover, northern blot analysis indicated that this expression was regulated at the mRNA level. These results suggest that NRI functions in mature cells.  相似文献   

18.
19.
An alcohol-soluble storage protein, a 16.6-kDa prolamin found in rice seeds, was purified from both the total protein body and purified type I protein body fractions. The partial amino acid sequences of three tryptic peptides generated from the purified polypeptide were analyzed. A part of the 16.6-kDa prolamin cDNA was amplified from developing seed mRNA by the reverse transcribed polymerase chain reaction using an oligo (dT) primer and a primer which was synthesized based on the partial amino acid sequence. The amplified product was used to isolate the full-length cDNA clone (lambda RP16) from a developing seed cDNA library. The cDNA has an open reading frame encoding a hydrophobic polypeptide of 149 amino acids. The polypeptide was rich in glutamine (20.0%), cysteine (10.0%), and methionine (6.9%). The cysteine content was higher than those of most other rice storage proteins. Messenger RNA of the 16.6-kDa prolamin was detected in seeds, but not in other aerial tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号