首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biomolecular photoreceptor consisting of bacteriorhodopsin (bR)-based complex Langmuir–Blodgett (LB) films was developed for color image detection. By mimicking the functions of the pigments in retina of human visual system, biomolecules with photoelectric conversion function were chosen and used as constituents for an artificial photoreceptor. bR and flavin were deposited onto the patterned (9-pixelized) ITO glass by LB technique. A 9-pixel biomolecular photoreceptor was fabricated with a sandwich-type structure of ITO/LB films/electrolyte gel/Pt. Since each functional molecule shows its own response characteristic according to the light illumination in the visible region, the simplified knowledge-based algorithm for interpretation of the incident light wavelength (color) was proposed based on the basic rule describing the relationship between the photoelectric response characteristics and the incident light wavelength. When simple color images were projected onto the photoreceptor, the primary colors in visible light region, red, green, and blue were clearly recognized, and the projected color images were fairly well reproduced onto the color monitor by the proposed photoreceptor with the knowledge-based algorithm. It is concluded that the proposed device has a capability of recognizing the color images and can be used as a model system to simulate the information processing function of the human visual system.  相似文献   

2.
Intensity discrimination experiments are performed with individual walking honeybees trained to color stimuli (UV, blue and green) of constant intensity. The choice behavior to stimuli of identical wavelength spectrum but different intensities is tested. A graded choice behavior is found. The training intensity is chosen with the highest probability in most cases. Phototaxis as well as brightness discrimination can be excluded. The choice behavior is explained exclusively by discrimination of chromaticness (hue and saturation) according to the Bezold-Brücke shift.The bees adapt to the chromatic stimuli during their choices. From the behavioral data, it is concluded that in adaptation, adjustment in photoreceptor sensitivity in one receptor also affects the sensitivity of the other receptors (co-adaptation). The linear adaptation model corresponding to the von Kries Coefficient Law used up to now to describe adaptation to white light in the honeybee does not describe this type of adaptation.A quantitative model of adaptation to chromatic stimuli extending the linear adaptation model is developed.The most reasonable mechanism of co-adaptation is optical coupling by lateral filtering. Other mechanisms such as electrical coupling are unlikely, since their effects on color vision would lead to effects inconsistent with Graßmann's Laws.  相似文献   

3.
A model is proposed for the responses of vertebrate photoreceptor cell to light stimuli. It is based on the findings that the resistance of visual cell membrane increases during illumination. In this model the relation between the changes of membrane resistance and light intensity through synaptic connection is considered. This model suggests the general relation between the peak amplitude of receptor response and the intensity of flash.  相似文献   

4.
Experiments on the integration of blue and orange stimuli in Halobacterium salinarum were performed by using different combinations of blue and orange steps. The results show that the prevalence of the blue stimulus over the orange one depends on both the blue and the orange light intensities. A quantitative analysis of the current hypotheses on the phototransduction of orange and UV-blue light stimuli is presented, showing that the balancing between the two antagonistic stimuli should depend only on the intensity of the blue stimulus and not on that of the orange one, provided that the combination of the two stimuli occurs linearly at the photoreceptor stage. We conclude that blue and orange stimuli elicit distinct intracellular signals whose integration occurs downstream of the photoreceptor.  相似文献   

5.
Dynamic responses of visual cells of the Limulus eye to stimuli of sinusoids and narrow pulses of light superimposed on a nonzero mean level have been obtained. Amplitudes and phase angles of averaged sinusoidal generator potential are plotted with respect to frequency of intensity modulation for different mean levels of light adaptation. At frequencies above 10 CPS, generator potential amplitudes decrease sharply and phase lag angle increases. At frequencies below 1 CPS, amplitude decreases. A maximum of amplitude in the region of 1 to 2 CPS is apparent with increased mean intensity. The generator potential responses are compared with those of differential equation models. Variation of gain with mean intensity for incremental stimuli is consistent with logarithmic sensitivity of the photoreceptor. Frequency response of the photoreceptor derived from narrow pulses of light predicts the frequency response obtained with sinusoidal stimuli, and the photoreceptor is linear for small signals in the light-adapted state.  相似文献   

6.
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated. Memory storage, which requires an elevation in calcium, occurs in the photoreceptors, which receive monosynaptic input from hair cells that sense acceleration stimuli such as turbulence. Both light and hair cell activity increase calcium concentration in the photoreceptor, but it is unknown whether paired calcium signals combine supralinearly to initiate memory storage. A correlate of memory storage is an enhancement of the long lasting depolarization (LLD) after light offset, which is attributed to a reduction in voltage dependent potassium currents; however, it is unclear what causes the LLD in the untrained animal.These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor. Simulations of the interaction between light and hair cell activity show that paired stimuli do not produce a greater calcium increase than unpaired stimuli. This suggests that hair cell activity is acting via some other pathway to initiate memory storage. In addition, simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents. Thus, the expression of this correlate of classical conditioning may depend on a leak potassium current.  相似文献   

7.
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.  相似文献   

8.
Electrical coupling of vertebrate photoreceptors is well known to improve the signal: noise ratio in the photoreceptor layer for large-area stimuli. For example, if N photoreceptors are perfectly coupled to each other, the signal: noise ratio is improved for stimuli illuminating more than a number M = square root of N of the receptors but is made worse for small-area stimuli illuminating less than M of the N receptors. Using the model of Lamb & Simon (J. Physiol., Lond. 263, 257 (1976], which treats the photoreceptor layer as a square array of cells, each coupled through a resistive gap junction to the four cells around it, we show that the signal:noise ratio for small-area stimuli is much greater than would be expected from a model in which receptors are assumed to be perfectly coupled. Contrary to predictions made assuming perfect coupling, receptor coupling should not prevent rods from detecting single photons, but whether the single photon signal can be detected at the bipolar cell level depends on how signals are read out of the receptor layer. The signal:noise ratio in bipolar cells postsynaptic to the photo-receptor layer is determined partly by synaptic convergence and nonlinearity in synaptic transmission from receptors. If the synaptic gain decreases with light-induced receptor hyperpolarization, as is found experimentally, then receptor coupling can improve the postsynaptic signal:noise ratio for stimuli illuminating only one receptor, even though coupling decreases the presynaptic signal:noise ratio for such stimuli. Moreover, increasing the number of coupled receptors projecting to a bipolar cell can improve the signal:noise ratio for localized stimuli if the synapse is sufficiently nonlinear (although, for the degree of nonlinearity seen in lower vertebrates, synaptic convergence makes the ratio worse for the single photon event). The fact that receptor coupling and synaptic convergence can, under some circumstances, improve the signal:noise ratio in bipolar cells suggests a principle of retinal design that may compete with the requirements of high spatial resolution.  相似文献   

9.
A very well-documented case of flower-beetle interaction is the association in the Mediterranean region between red bowl-shaped flowers and beetles of the family Glaphyridae. The present study examines the visual mechanisms by which Pygopleurus israelitus (Glaphyridae: Scarabaeoidea: Coleoptera) would perceive the colors of flowers they visit by characterizing the spectral sensitivity of its photoreceptors. Our measurements revealed the presence of three types of photoreceptors, maximally sensitive in the UV, green and red areas of the spectrum. Using color vision space diagrams, we calculated the distribution of beetle-visited flower colors in the glaphyrid and honeybee color space and evaluated whether chromatic discrimination differs between the two types of pollinators. Respective color loci in the beetle color space are located on one side of the locus for green foliage background, whereas in the honeybee the flower color loci surround the locus occupied by green foliage. Our results represent the first evidence of a red sensitive photoreceptor in a flower-visiting coleopteran species, highlighting Glaphyridae as an interesting model group to study the role of pollinators in flower color evolution.  相似文献   

10.
Intracellular recording is a powerful technique used to determine how a single cell may respond to a given stimulus. In vision research, intracellular recording has historically been a common technique used to study sensitivities of individual photoreceptor cells to different light stimuli that is still being used today. However, there remains a dearth of detailed methodology in the literature for researchers wishing to replicate intracellular recording experiments in the eye. Here we present the insect as a model for examining eye physiology more generally. Insect photoreceptor cells are located near the surface of the eye and are therefore easy to reach, and many of the mechanisms involved in vision are conserved across animal phyla. We describe the basic procedure for in vivo intracellular recording of photoreceptor cells in the eye of a butterfly, with the goal of making this technique more accessible to researchers with little prior experience in electrophysiology. We introduce the basic equipment needed, how to prepare a live butterfly for recording, how to insert a glass microelectrode into a single cell, and finally the recording procedure itself. We also explain the basic analysis of raw response data for determining spectral sensitivity of individual cell types. Although our protocol focuses on determining spectral sensitivity, other stimuli (e.g., polarized light) and variations of the method are applicable to this setup.  相似文献   

11.
The development of color vision models has allowed the appraisal of color vision independent of the human experience. These models are now widely used in ecology and evolution studies. However, in common scenarios of color measurement, color vision models may generate spurious results. Here I present a guide to color vision modeling (Chittka (1992, Journal of Comparative Physiology A, 170, 545) color hexagon, Endler & Mielke (2005, Journal Of The Linnean Society, 86, 405) model, and the linear and log‐linear receptor noise limited models (Vorobyev & Osorio 1998, Proceedings of the Royal Society B, 265, 351; Vorobyev et al. 1998, Journal of Comparative Physiology A, 183, 621)) using a series of simulations, present a unified framework that extends and generalize current models, and provide an R package to facilitate the use of color vision models. When the specific requirements of each model are met, between‐model results are qualitatively and quantitatively similar. However, under many common scenarios of color measurements, models may generate spurious values. For instance, models that log‐transform data and use relative photoreceptor outputs are prone to generate spurious outputs when the stimulus photon catch is smaller than the background photon catch; and models may generate unrealistic predictions when the background is chromatic (e.g. leaf reflectance) and the stimulus is an achromatic low reflectance spectrum. Nonetheless, despite differences, all three models are founded on a similar set of assumptions. Based on that, I provide a new formulation that accommodates and extends models to any number of photoreceptor types, offers flexibility to build user‐defined models, and allows users to easily adjust chromaticity diagram sizes to account for changes when using different number of photoreceptors.  相似文献   

12.
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.  相似文献   

13.
14.
Neural modification by paired sensory stimuli   总被引:1,自引:1,他引:0       下载免费PDF全文
With repetitive stimulation of two sensory pathways which are intact within the isolated nervous system of Hermissenda, features of a cellular conditioning paradigm were identified. Type A photoreceptors, unlike type B photoreceptors, produce fewer impulses in response to light following temporally specific pairing of light stimuli with rotation stimuli. Type A photoreceptor impulse wave-forms are also specifically changed by such stimulus regimens. These findings can be explained, at least in part, by increased inhibition of type A cells by type B cells after stimulus pairing.  相似文献   

15.
Dark-adapted retinae of the toad and bullfrog were found to respond to brief light stimuli with a succession of rapid mechanical changes. The latencies of the mechanical responses, as well as the effects of chemicals known to block the synapses on photoreceptor cells, indicate that the first mechanical response represents swelling of the photoreceptor cells. The first response is followed by mechanical changes in the postsynaptic elements. It is suggested that the observed response of the photoreceptor cells is a mechanical expression of the process underlying heat production by the cells.  相似文献   

16.
Abshire PA  Andreou AG 《Bio Systems》2001,62(1-3):113-133
Biological photoreceptors transduce and communicate information about visual stimuli to other neurons through a series of signal transformations among physical states such as concentration of a chemical species, current, or the number of open ion channels. We present a communication channel model to quantify the transmission and degradation of visual information in the blowfly photoreceptor cell. The model is a cascade of linear transfer functions and noise sources that are derived from fundamental principles whenever possible, and whose parameters are estimated from physiological data. We employ the model to calculate the information capacity of blowfly phototransduction; our results compare favorably with estimates of the capacity derived from experimental measurements by de Ruyter van Steveninck and Laughlin (Nature 379 (1996) 642-645) and Juusola (J. Gen. Physiol. 104 (1994) 593-621). The model predicts that photon shot noise and ion channel noise are the dominant noise sources that limits information transmission in the blowfly photoreceptor.  相似文献   

17.
Hackam AS 《IUBMB life》2005,57(6):381-388
The retina is a complex tissue composed of multiple interconnected cell layers, highly specialized for transforming light and color into electrical signals perceived by the brain. Damage or death of the primary light-sensing cells, the photoreceptors, results in devastating effects on vision. Despite the identification of numerous mutations that cause inherited retinal degenerations, the cellular and molecular mechanisms leading from the primary mutations to photoreceptor apoptosis are not understood. Wnt signaling has essential regulatory functions in a wide variety of critical developmental processes. Our research and others' have suggested that the Wnt pathway may be involved in retinal degeneration. Wnt ligands regulate developmental death of Drosophila photoreceptors, dysregulated Wnt signaling is involved in neuronal degeneration elsewhere in the central nervous system and Wnts control the expression of pro-survival growth factors in mammalian tissues. Additionally, altered expression of Wnt pathway genes, including the anti-apoptotic Wnt signaling regulator Dickkopf 3 (Dkk3), were observed during photoreceptor loss. This review examines the evidence and develops a model proposing a pro-survival role for Wnt signaling during photoreceptor injury. Because manipulating Wnt signaling has been demonstrated to have therapeutic potential for the treatment of Alzheimers disease, understanding the involvement of Wnts in photoreceptor death will determine whether targeting the Wnt pathway should also be considered as a possible therapeutic strategy for retinal degenerations.  相似文献   

18.
A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.  相似文献   

19.
The informational significance of human perceptive and semantic evoked potentials to an abrupt change in non-verbal or verbal stimuli, respectively, is discussed. The amplitudes of perceptive and semantic evoked potentials were shown to be positively correlated with subjective estimates of differences between these stimuli. Multidimensional scaling of amplitude matrices and subjective estimates of differences after pair-wise replacement of the stimuli showed that colors and color names were encoded by excitation vectors of equal lengths in four-dimensional spherical space of colors. Color differences were shown to be equal to absolute values of their excitation vectors, whereas semantic differences in color names turned to be determined by the absolute values of vector differences between color memory traces represented as long-term memory excitation vectors. The data were summarized in the framework of cognitive spherical model.  相似文献   

20.
Crayfish caudal photoreceptor units were monitored during transient and steady-state responses to light stimuli (step on, step off). A statistical analysis of interpulse interval distributions during quasi-stationary time periods was carried out. Firing statistics during transient conditions were superposable with statistics under whatever steady stimulation produced the same firing rate, indicating that mean firing rate is a sufficient statistic. Distributions encountered formed a continuum of possible shapes. Considerable variation in shape was found with temperature and also among species, with Orconectes clarkii tending to fire more regularly than Orconectes virilis. Some properties of O. virilis statistics are described, including a linear relation between mean and standard deviation, and a tendency for intervals to be nonindependent. The data are considered as constraints on closed form models of the photoreceptor nerve pulse generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号