首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium dodecyl sulphate (SDS), a detergent that mimics some characteristics of biological membranes, has been found to affect significantly fibril formation by a peptide from human complement receptor 1. In aqueous solution the peptide is unfolded but slowly aggregates to form fibrils. In sub-micellar concentrations of SDS the peptide is initially alpha-helical but converts rapidly to a beta-sheet structure and large quantities of fibrils form. In SDS above the critical micellar concentration the peptide adopts a stable alpha-helical structure and no fibrils are observed. These findings demonstrate the sensitivity of fibril formation to solution conditions and suggest a possible role for membrane components in amyloid fibril formation in living systems.  相似文献   

2.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

3.
Transthyretin (TTR) amyloid fibrils are the main component of the amyloid deposits occurring in Familial Amyloidotic Polyneuropathy patients. This is 1 of 20 human proteins leading to protein aggregation disorders such as Alzheimer's and Creutzfeldt-Jakob diseases. The structural details concerning the association of the protein molecules are essential for a better understanding of the disease and consequently the design of new strategies for diagnosis and therapeutics. Disulfide bonds are frequently considered essential for the stability of protein aggregates and since in the TTR monomers there is one cysteine residue, it is important to determine unambiguously the redox state of sulfur present in the fibrils. In this work we used x-ray spectroscopy to further characterize TTR amyloid fibrils. The sulfur K-edge absorption spectra for the wild type and some amyloidogenic TTR variants in the soluble and fibrillar forms were analyzed. Whereas in the soluble proteins the thiol group from cysteine (R-SH) and the thioether group from methionine (R-S-CH(3)) are the most abundant forms, in the TTR fibrils there is a significant oxidation of sulfur to the sulfonate form in the cysteine residue and a partial oxidation of sulfur to sulfoxide in the methionine residues. Further interpretation of the data reveals that there are no disulfide bridges in the fibrillar samples and suggest conformational changes in the TTR molecule, namely in strand A and/or in its vicinity, upon fibril formation.  相似文献   

4.
We show that a series of peptides corresponding to individual β-strands in native β-lactoglobulin readily form amyloid aggregates and that such aggregates are capable of seeding fibril formation by a full-length form of β-lactoglobulin in which the disulfide bonds are reduced. By contrast, preformed fibrils corresponding to only one of the β-strands that we considered, βA, were found to promote fibril formation by a full-length form of β-lactoglobulin in which the disulfide bonds are intact. These results indicate that regions of high intrinsic aggregation propensity do not give rise to aggregation unless at least partial unfolding takes place. Furthermore, we found that the high aggregation propensity of one of the edge strands, βI, promotes dimerisation of the native structure rather than misfolding and aggregation since the structure of βI is stabilised by the presence of a disulfide bond. These findings demonstrate that the interactions that promote folding and native-state oligomerisation can also result in high intrinsic amyloidogenicity. However, we show that the presence of the remainder of the sequence dramatically reduces the net overall aggregation propensity by negative design principles that we suggest are very common in biological systems as a result of evolutionary processes.  相似文献   

5.
Acid-induced unfolding mechanism of recombinant human endostatin   总被引:16,自引:0,他引:16  
Li B  Wu X  Zhou H  Chen Q  Luo Y 《Biochemistry》2004,43(9):2550-2557
Endostatin is a potent angiogenesis inhibitor. The structure of endostatin is unique in that its secondary structure is mainly irregular loops and beta-sheets and contains only a small fraction of alpha-helices with two pairs of disulfide bonds in a nested pattern. We choose human endostatin as a model system to study the folding mechanism of this kind. Nuclear magnetic resonance (NMR), tryptophan emission fluorescence, and circular dichroism (CD) were used to monitor the unfolding process of endostatin upon acid titration. Urea-induced unfolding was used to measure the stability of endostatin under different conditions. Our results show that endostatin is very acid-resistant; some native structure still remains even at pH 2 as evidenced by (1)H NMR. Trifluoroethanol (TFE) destabilizes native endostatin, while it makes endostatin even more acid-resistant in the low pH region. Stability measurement of endostatin suggests that endostatin is still in native structure at pH 3.5 despite the decreased stability. Acid-induced unfolding of endostatin is reversible, although it requires a long time to reach equilibrium below pH 3. Surprisingly, the alpha-helical content of endostatin is increased when it is unfolded at pH 1.6, and the alpha-helical content of the polypeptide chain of unfolded endostatin increases linearly with TFE concentration in the range of 0-30%. This observation indicates that the polypeptide chain of unfolded endostatin has an intrinsic alpha-helical propensity. Our discoveries may provide clues for refolding endostatin more efficiently. The acid-resistance property of endostatin may have biological significance in that it cannot be easily digested by proteases in an acidic environment such as in a lysosome in the cell.  相似文献   

6.
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.  相似文献   

7.
The disease oculopharyngeal muscular dystrophy is caused by alanine codon trinucleotide expansions in the N‐terminal segment of the nuclear poly(A) binding protein PABPN1. As histochemical features of the disease, intranuclear inclusions of PABPN1 have been reported. Whereas the purified N‐terminal domain of PABPN1 forms fibrils in an alanine‐dependent way, fibril formation of the full‐length protein occurs also in the absence of alanines. Here, we addressed the question whether the stability of the RNP domain or domain swapping within the RNP domain may add to fibril formation. A variant of full‐length PABPN1 with a stabilizing disulfide bond at position 185/201 in the RNP domain fibrillized in a redox‐sensitive manner suggesting that the integrity of the RNP domain may contribute to fibril formation. Thermodynamic analysis of the isolated wild‐type and the disulfide‐linked RNP domain showed two state unfolding/refolding characteristics without detectable intermediates. Quantification of the thermodynamic stability of the mutant RNP domain pointed to an inverse correlation between fibril formation of full‐length PABPN1 and the stability of the RNP domain.  相似文献   

8.
beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.  相似文献   

9.
Aggregate formation and the structure of the aggregates of disulfide-reduced proteins were investigated using -lactalbumin and lysozyme as model proteins. First, reducing conditions were adjusted so that only one of the four disulfide bonds present in each native protein was cleaved. These three-disulfide (3SS) proteins are known to adopt almost native conformations, yet formed precipitates with a basic peptide, lactoferricin, and heparin and heparin fragment, respectively, at concentrations at which native proteins mixed with these compounds remained clear. The 3SS-lysozyme also formed precipitates in the absence of these ligands. Thus, subtle structural changes could lead to aggregation. Electron microscopy revealed fibrillar structures in the aggregates of extensively reduced proteins in the absence of ligands but not in their presence, which shows that the reduction of disulfide bonds suffices for fibril formation and that ligands inhibit fibril formation.  相似文献   

10.
Many proteins form amyloid-like fibrils in vitro under partially or highly unfolding conditions. Recently, we showed that the residual structure in highly unfolded state is closely related to amyloid fibril formation in hen lysozyme. Thus, to better understand the role of the residual structure on amyloid fibril formation, we focused on AL amyloidosis, which results from the extracellular deposition of monoclonal immunoglobulin light-chain variable domains (VLs) as insoluble fibrils. We examined the relationship between the residual structure and amyloid fibril formation on three λ6 recombinant VL (rVλ6) proteins, wild type, Jto, and Wil. Although rVλ6 proteins are highly unfolded in pH 2, 15N NMR transverse relaxation experiments revealed nonrandom structures in regions, which include some hydrophobic residues and a single disulfide bond, indicating the existence of residual structure in rVλ6 proteins. However, the residual structure of Wil was markedly disrupted compared with those of the other proteins, despite there being no significant differences in amino acid sequences. Fibrillation experiments revealed that Wil had a longer lag time for fibril formation than the others. When the single disulfide bond was reduced and alkylated, the residual structure was largely disrupted and fibril formation was delayed in all three rVλ6 proteins. It was suggested that the residual structure in highly unfolded state has a crucial role in amyloid fibril formation in many proteins, even pathogenic ones.  相似文献   

11.
Ovalbumin (OVA), a non-inhibitory member of the serpin superfamily, forms fibrillar aggregates upon heat-induced denaturation. Recent studies suggested that OVA fibrils are generated by a mechanism similar to that of amyloid fibril formation, which is distinct from polymerization mechanisms proposed for other serpins. In this study, we provide new insights into the mechanism of OVA fibril formation through identification of amyloidogenic core regions using synthetic peptide fragments, site-directed mutagenesis, and limited proteolysis. OVA possesses a single disulfide bond between Cys(73) and Cys(120) in the N-terminal helical region of the protein. Heat treatment of disulfide-reduced OVA resulted in the formation of long straight fibrils that are distinct from the semiflexible fibrils formed from OVA with an intact disulfide. Computer predictions suggest that helix B (hB) of the N-terminal region, strand 3A, and strands 4-5B are highly β-aggregation-prone regions. These predictions were confirmed by the fact that synthetic peptides corresponding to these regions formed amyloid fibrils. Site-directed mutagenesis of OVA indicated that V41A substitution in hB interfered with the formation of fibrils. Co-incubation of a soluble peptide fragment of hB with the disulfide-intact full-length OVA consistently promoted formation of long straight fibrils. In addition, the N-terminal helical region of the heat-induced fibril of OVA was protected from limited proteolysis. These results indicate that the heat-induced fibril formation of OVA occurs by a mechanism involving transformation of the N-terminal helical region of the protein to β-strands, thereby forming sequential intermolecular linkages.  相似文献   

12.
Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα‐Cα distances, solvent exposure, and side‐chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C‐terminus of the B‐chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild‐type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R‐state conformation and thus showing that the R‐state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.  相似文献   

13.
Acidic fibroblast growth factor from newt (Notopthalmus viridescens) is a approximately 15-kDa, all beta-sheet protein devoid of disulfide bonds. In the present study, we investigate the effects of 2,2,2-trifluoroethanol (TFE) on the structure of newt acidic fibroblast growth factor (nFGF-1). The protein aggregates maximally in 10% (v/v) TFE. Congo red and thioflavin T binding experiments suggest that the aggregates induced by TFE have properties resembling the amyloid fibrils. Transmission electron microscopy and x-ray fiber diffraction data show that the fibrils (induced by TFE) are straight, unbranched, and have a cross-beta structure with an average diameter of 10-15 A. Preformed fibrils (induced by TFE) of nFGF-1 are observed to seed amyloid-like fibril formation in solutions containing the protein (nFGF-1) in the native beta-barrel conformation. Fluorescence, far-UV CD, anilino-8-napthalene sulfonate binding, multidimensional NMR, and Fourier transformed infrared spectroscopy data reveal that formation of a partially structured intermediate state(s) precedes the onset of the fibrillation process. The native beta-barrel structure of nFGF-1 appears to be disrupted in the partially structured intermediate state(s). The protein in the partially structured intermediate state(s) is found to be "sticky" with a solvent-exposed non-polar surface(s). Amyloid fibril formation appears to occur due to coalescence of the protein in the partially structured intermediate state(s) through solvent-exposed non-polar surfaces and intermolecular beta-sheet formation among the extended, linear beta-strands in the protein.  相似文献   

14.
Oxidative stress has been implicated in the pathogenesis and progression of several tauopathies, including Alzheimer''s disease. The deposition of fibrillar inclusions made of tau protein is one of the pathological hallmarks of these disorders. Although it is becoming increasingly evident that the specific fibril structure may vary from one tauopathy to another and it is recognized that different types of isoforms (three-repeat and four-repeat tau) can be selectively deposited, little is known about the role oxidation may play in aggregation. Four-repeat tau contains two cysteines that can form an intramolecular disulfide bond, resulting in a structurally restrained compact monomer. There is discrepancy as to whether this monomer can aggregate or not. Using isolated four-repeat tau monomers (htau40) with intramolecular disulfide bonds, we demonstrate that these proteins form fibrils. The fibrils are less stable than fibrils formed under reducing conditions but are highly effective in seeding oxidized tau monomers. Conversely, a strong seeding barrier prevents incorporation of reduced tau monomers, tau mimics in which the cysteines have been replaced by alanines or serines, and three-repeat tau (htau23), a single-cysteine isoform. The barrier also holds true when seed and monomer types are reversed, indicating that oxidized and reduced tau are incompatible with each other. Surprisingly, fibrils composed of compact tau disaggregate upon reduction, highlighting the importance of the intramolecular disulfide bond for fibril stability. The findings uncover a novel binary redox switch that controls the aggregation and disaggregation of these fibrils and extend the conformational spectrum of tau aggregates.  相似文献   

15.
The apomyoglobin mutant W7FW14F forms amyloid-like fibrils at physiological pH. We examined the kinetics of fibrillogenesis using three techniques: the time dependence of the fluorescence emission of thioflavin T and 1-anilino-8-naphthalenesulfonate, circular dichroism measurements, and electron microscopy. We found that in the early stage of fibril formation, non-native apomyoglobin molecules containing beta-structure elements aggregate to form a nucleus. Subsequently, more molecules aggregate around the nucleus, thereby resulting in fibril elongation. We evaluated by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) the cytotoxicity of these aggregates at the early stage of fibril elongation versus mature fibrils and the wild-type protein. Similar to other amyloid-forming proteins, cell toxicity was not due to insoluble mature fibrils but rather to early pre-fibrillar aggregates. Propidium iodide uptake showed that cell toxicity is the result of altered membrane permeability. Phalloidin staining showed that membrane damage is not associated to an altered cell shape caused by changes in the cytoskeleton.  相似文献   

16.
Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates.  相似文献   

17.
Recent studies have revealed that the redox-sensitive glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is involved in neuronal cell death that is triggered by oxidative stress. GAPDH is locally deposited in disulfide-bonded aggregates at lesion sites in certain neurodegenerative diseases. In this study, we investigated the molecular mechanism that underlies oxidative stress-induced aggregation of GAPDH and the relationship between structural abnormalities in GAPDH and cell death. Under nonreducing in vitro conditions, oxidants induced oligomerization and insoluble aggregation of GAPDH via the formation of intermolecular disulfide bonds. Because GAPDH has four cysteine residues, including the active site Cys(149), we prepared the cysteine-substituted mutants C149S, C153S, C244A, C281S, and C149S/C281S to identify which is responsible for disulfide-bonded aggregation. Whereas the aggregation levels of C281S were reduced compared with the wild-type enzyme, neither C149S nor C149S/C281S aggregated, suggesting that the active site cysteine plays an essential role. Oxidants also caused conformational changes in GAPDH concomitant with an increase in beta-sheet content; these abnormal conformations specifically led to amyloid-like fibril formation via disulfide bonds, including Cys(149). Additionally, continuous exposure of GAPDH-overexpressing HeLa cells to oxidants produced disulfide bonds in GAPDH leading to both detergent-insoluble and thioflavin-S-positive aggregates, which were associated with oxidative stress-induced cell death. Thus, oxidative stresses induce amyloid-like aggregation of GAPDH via aberrant disulfide bonds of the active site cysteine, and the formation of such abnormal aggregates promotes cell death.  相似文献   

18.
The Y114C mutation in human transthyretin (TTR) is associated with a particular form of familial amyloidotic polyneuropathy. We show that vitreous aggregates ex vivo consist of either regular amyloid fibrils or disordered disulfide-linked precipitates that maintain the ability to bind Congo red. Furthermore, we demonstrate in vitro that the ATTR Y114C mutant exists in three forms: one unstable but nativelike tetrameric form, one highly aggregated form in which a network of disulfide bonds is formed, and one fibrillar form. The disulfide-linked aggregates and the fibrillar form of the mutant can be induced by heat induction under nonreduced and reduced conditions, respectively. Both forms are recognized by the amyloid specific antibody MAB(39-44). In a previous study, we have linked exposure of this epitope in TTR to a three-residue shift in beta-strand D. The X-ray crystallographic structure of reduced tetrameric ATTR Y114C shows a structure similar to that of the wild type but with a more buried position of Cys10 and with beta-mercaptoethanol associated with Cys114, verifying the strong tendency for this residue to form disulfide bonds. Combined with the ex vivo data, our in vitro findings suggest that ATTR Y114C can lead to disease either by forming regular unbranched amyloid fibrils or by forming disulfide-linked aggregates that maintain amyloid-like properties but are unable to form regular amyloid fibrils.  相似文献   

19.
A number of medical disorders, including Alzheimer's disease and type II diabetes, is characterised by the deposition of amyloid fibrils in tissue. The insolubility and size of the fibrils has largely precluded the determination of their structures at high resolution. Studies probing the stability of amyloid fibrils can reveal which non-covalent interactions are important in the formation and maintenance of the fibril structure. In particular, we review here the use of high hydrostatic pressure and high temperature as perturbation techniques. In general, small aggregates formed early in the assembly process can be dissociated by high pressure, but mature amyloid fibrils are highly pressure stable. This finding suggests that a temporal transition occurs during which side chain packing and hydrogen bond formation are optimised, whereas the hydrophobic effect and electrostatic interactions play a dominant role in the early stages of the aggregation. High temperatures, however, can disrupt most aggregates. Though the observed stability of amyloid fibrils is not unique to these structures, the notion that amyloid fibrils can represent the global minimum in free energy is supported by this type of investigations. Some implications regarding the nature of toxic species, associated with at least many of the amyloid disorders, and recently proposed structural models are discussed.  相似文献   

20.
Myoclonus epilepsy of type 1 (EPM1) is a rare monogenic progressive and degenerative epilepsy, also known under the name Unverricht-Lundborg disease. With the aim of comparing their behavior in vitro, wild-type (wt) human stefin B (cystatin B) and the G4R and the R68X mutants observed in EPM1 were expressed and isolated from the Escherichia coli lysate. The R68X mutant (Arg68Stop) is a peptide of 67 amino acids from the N terminus of stefin B. CD spectra have shown that the R68X peptide is not folded, in contrast to the G4R mutant, which folds like wild type. The wild type and the G4R mutant were unfolded by urea and by trifluoroethanol (TFE). It has been shown that both proteins have closely similar stability and that at pH 4.8, where a native-like intermediate was demonstrated, TFE induces unfolding intermediates prior to the major transition to the all-alpha-helical state. Kinetics of fibril formation were followed by Thioflavin T fluorescence while the accompanying changes of morphology were followed by the transmission electron microscopy (TEM). For the two folded proteins the optimal concentration of TFE producing extensive lag phases and high fibril yields was predenaturational, 9% (v/v). The unfolded R68X peptide, which is highly prone to aggregate, formed amyloid fibrils in aqueous solution and in predenaturing 3% TFE. The G4R mutant exhibited a much longer lag phase than the wild type, with the accumulation of prefibrillar aggregates. Implications for pathology in view of the higher toxicity of prefibrillar aggregates to cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号