首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Jaagsiekte sheep retrovirus (JSRV) uses hyaluronidase 2 (Hyal2) as a cell entry receptor. By making inactivating mutations to the catalytic residues of human Hyal2, we found that hyaluronidase activity was dispensable for its receptor function. The affinities of the JSRV envelope glycoprotein for Hyal2 and the Hyal2 mutant were similar, and hyaluronan did not block either high-affinity interaction or virus infection. While generating the Hyal2 mutant, we discovered that our previous analysis of the hyaluronidase activity of Hyal2 was affected by a contaminating hyaluronan lyase, which we have identified as the occlusion-derived baculovirus E66 protein of the recombinant baculovirus used to produce Hyal2. We now report that purified human Hyal2 is a weak acid-active hyaluronidase.  相似文献   

2.
PGI is a housekeeping gene encoding phosphoglucose isomerase (PGI) a glycolytic enzyme that also functions as a cytokine (autocrine motility factor (AMF)/neuroleukin/maturation factor) upon secretion from the cell and binding to its 78 kDa seven-transmembrane domain receptor (gp78/AMF-R). PGI contains a CXXC motif, characteristic of redox proteins and possibly evolutionarily related to the CC and CXC motif of the chemokine gene family. Using site-directed mutagenesis, single- and double-deletion (CXC, CC) mutants were created by deleting amino acids 331 and 332 of human PGI, respectively. The mutant proteins lost their enzymatic activity; however, neither of the deletions augmented the proteins' binding affinity to the receptor and all maintained cytokine function. The results demonstrate that the enzymatic activity of PGI is not essential for either receptor binding or cytokine function of human PGI.  相似文献   

3.
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two RING finger E3 ubiquitin ligases (MIR1 and MIR2) that mediate ubiquitination and degradation of cellular proteins important for the establishment of an efficient antiviral immune response. MIR1 and MIR2 share 30% sequence identity; however, their substrate preferences are varied. MIR1 has been shown to primarily downregulate major histocompatibility complex class I (MHC-I), whereas MIR2 can downregulate a wide range of cell surface proteins. Many of the MIR substrates are thought to be present in lipid raft microdomains, a subregion of the plasma membrane known to be important for a wide range of signal transduction events. Palmitoylation is a posttranslational modification that increases recruitment of transmembrane proteins to lipid rafts. In this study, we investigated the importance of palmitoylation for MIR function. We present evidence that MIR2-mediated downregulation of MHC-I and platelet endothelial cell adhesion molecule 1 (PECAM-1) but not other substrates is inhibited in the presence of the drug 2-bromohexadecanoic acid (2-Br), a chemical inhibitor of palmitoylation. Biochemical analysis indicates that MIR2 is directly palmitoylated on cysteine 146. Mutation of this cysteine to a phenylalanine prevents MIR2 palmitoylation and blocks the ability of MIR2 to downregulate MHC-I and PECAM-I but not B7.2 and intercellular adhesion molecule 1 (ICAM-I), consistent with the phenotype observed after 2-Br treatment. Unpalmitoylated MIR2 does not interact with MHC-I and is thus unable to ubiquitinate and downregulate MHC-I from the cell surface. Furthermore, we observed that MIR2 is palmitoylated in vivo during lytic infection. Palmitoylation may act to regulate MIR2 function and localization during viral infection by allowing MIR2 to properly interact with and downregulate multiple substrates known to play an important role in the host immune response.  相似文献   

4.
53BP1 plays an important role in cellular response to DNA damage. It is thought to be the mammalian homologue of budding yeast Rad9 and/or fission yeast Crb2. Rad9/Crb2 are bona fide checkpoint proteins whose activation requires their corresponding C-terminal tandem BRCT (BRCA1 C-terminal) motifs, which mediate their oligomerization and phosphorylation at multiple sites following DNA damage. Here we show that the function of human 53BP1 similarly depends on its oligomerization and phosphorylation at multiple sites but in a BRCT domain-independent manner. Moreover, unlike its proposed yeast counterparts, human 53BP1 only has limited checkpoint functions but rather acts as an adaptor in the repair of DNA double strand breaks. This difference in function may reflect the higher complexity of the DNA damage response network in metazoa including the evolution of other BRCT domain-containing proteins that may have functions redundant or overlapping with those of 53BP1.  相似文献   

5.
Chemokine-driven neutrophil and monocyte recruitment into the uterus and cervix has been proposed to initiate labor. Chemokines that bind CXCR2 direct neutrophil migration and are induced during labor in humans. The chemokine CCL2, induced in the uterus by endocrine and mechanical signals, has been proposed to drive CCR2-dependent monocyte homing to the uterus to contribute to the initiation of labor. However, no direct evidence indicates that chemokines or their receptors play indispensable roles in labor-associated inflammation, and the impact of leukocyte infiltration on labor is unclear. Here, we have quantified expression of the principal monocyte- and neutrophil-attracting chemokines in the uteri of term pregnant (Day 18) and laboring wild-type mice. None of the neutrophil attractants we assayed were up-regulated with labor. Strikingly, however, Ccl2 was markedly increased, and this was concomitant with increased expression of Ccr2, the myeloid marker Itgam (also known as Cd11b), the monocyte/macrophage marker Emr1 (also known as F4/80). Moreover, in CCR2-deficient mice, this labor-associated increase in Itgam and Emr1 was not seen, consistent with the monocyte-trafficking defects that exist in these animals. Nonetheless, laboring CCR2-deficient and wild-type uteri showed similarly enhanced expression of the myometrial activation markers Gja1 and Oxtr (commonly known as connexin 43 and oxytocin receptor, respectively), and CCR2-deficient mice had gestation lengths, litter sizes, and fetal and placental weights no different from those of their wild-type counterparts. Thus, whereas labor is associated with an inflammatory response in gestational tissues, CCR2-dependent leukocyte recruitment into the mouse uterus is dispensable for the initiation of successful labor.  相似文献   

6.
Phosphatidylserine decarboxylase 2 (Psd2p) is currently being used to study lipid trafficking processes in intact and permeabilized yeast cells. The Psd2p contains a C2 homology domain and a putative Golgi retention/localization (GR) domain. C2 domains play important functions in membrane binding and docking reactions involving phospholipids and proteins. We constructed a C2 domain deletion variant (C2Delta) and a GR deletion variant (GRDelta) of Psd2p and examined their effects on in vivo function and catalysis. Immunoblotting confirmed that the predicted immature and mature forms of Psd2(C2Delta)p, Psd2(GRDelta)p, and wild type Psd2p were produced in vivo and that the proteins localized normally. Enzymology revealed that the Psd2(C2Delta)p and Psd2(GRDelta)p were catalytically active and could readily be expressed at levels 10-fold higher than endogenous Psd2p. Both Psd2p and Psd2(GRDelta)p expression complemented the growth defect of psd1Deltapsd2Delta strains and resulted in normal aminoglycerophospholipid metabolism. In contrast, the Psd2(C2Delta)p failed to complement psd1Deltapsd2Delta strains, and [(3)H]serine labeling revealed a severe defect in the formation of PtdEtn in both intact and permeabilized cells, indicative of disruption of lipid trafficking. These findings identify an essential, non-catalytic function of the C2 domain of Psd2p and raise the possibility that it plays a direct role in membrane docking and/or PtdSer transport to the enzyme.  相似文献   

7.
8.
Endocytosis and targeting of growth factor receptors for lysosomal degradation have been associated with ubiquitination of the intracellular part of the receptors. To elucidate the role of receptor ubiquitination in internalization and sorting of fibroblast growth factor receptor (FGFR), we constructed several mutants of FGFR1 in which lysines, potential ubiquitination sites, were substituted for arginines. Substitution of all lysine residues in the intracellular part of FGFR1 resulted in inactivation of the tyrosine kinase domain of the receptor. However, several multilysine FGFR1 mutants, where up to 26 of 29 lysines in the intracellular part of the receptor were mutated, retained tyrosine kinase activity. The active multilysine mutants were poorly ubiquitinated, but internalized normally, indicating that ubiquitination of the receptor is not required for endocytosis. In contrast, degradation of the multilysine mutants was dramatically reduced as the mutants were inefficiently transported to lysosomes but rather sorted to recycling endosomes. The altered sorting resulted in sustained signaling. The duration of FGFR1 signaling seems to be tightly regulated by receptor ubiquitination and subsequent sorting to the lysosomes for degradation.  相似文献   

9.
A number of studies have identified cytosolic prostaglandin E(2) synthase (cPGES)/p23 as a cytoplasmic protein capable of metabolism of prostaglandin E(2) (PGE(2)) from the cyclooxygenase metabolite prostaglandin endoperoxide (PGH(2)). However, this protein has also been implicated in a number of other pathways, including stabilization of the glucocorticoid receptor (GR) complex. To define the importance of the functions assigned to this protein, mice lacking detectible cPGES/p23 expression were generated. cPGES/p23(-/-) pups die during the perinatal period and display retarded lung development reminiscent of the phenotype of GR-deficient neonates. Furthermore, GR-sensitive gluconeogenic enzymes are not induced in the prenatal period. However, unlike GR-deficient embryos, cPGES/p23(-/-) embryos are small and a proliferation defect is observed in cPGES/p23(-/-) fibroblasts. Analysis of arachidonic acid metabolites in embryonic tissues and primary fibroblasts failed to support a function for this protein in PGE(2) biosynthesis. Thus, while the growth retardation of the cPGES/p23(-/-) pups and decreased proliferation of primary fibroblasts identify functions for this protein in addition to GR stabilization, it is unlikely that these functions include metabolism of PGH(2) to PGE(2).  相似文献   

10.
11.
12.
Mice lacking the pro-adhesive matricellular protein connective tissue growth factor (CTGF/CCN2) display an embryonic lethal phenotype due to defects in bone and cartilage. However, the specific role of CCN2 in skin development is unknown. Here, we generated mice deleted for CCN2 in the entire body (using a cre/lox system in which CCN2 is deleted in the entire body due to the presence of a constitutively expressed cre recombinase). We found that CCN2 was not required for the development of skin as defined by skin thickness measurements, trichrome staining and immunostaining with anti-CD31 (to detect endothelial cells) and anti-α−SMA (to detect smooth muscle cells and pericytes) antibodies. Thus, although recently we have shown that CCN2 is required for fibrogenesis in postnatal mice, CCN2 is not required for skin development during embryogenesis.  相似文献   

13.
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.  相似文献   

14.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

15.
《Neuron》2023,111(6):787-796.e4
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

16.
To examine the role of the ligand binding domain of epidermal growth factor receptor in its dimerization, we studied the dimerization of a truncated form of the receptor that resembles v-erbB in that it lacks a ligand binding domain. Receptor dimerization was determined by sedimentation analysis on sucrose density gradients at different concentrations of Triton X-100. At high concentrations of Triton X-100 (0.2%), the truncated receptor occurred as a monomer and displayed low basal autophosphorylation. By contrast, at low concentrations of Triton X-100 (0.01%), it existed as a dimer and exhibited high basal autophosphorylation. The ability of the truncated receptor to dimerize indicates that the ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization.  相似文献   

17.
GLP-1R (glucagon-like peptide-1 receptor) mediates the ‘incretin effect’ and many other anti-diabetic actions of its cognate ligand, GLP-1 (glucagon-like peptide-1). It belongs to the class B family of GPCRs (G protein-coupled receptors) and possesses an N-terminal putative SP (signal peptide). It has been reported that this sequence is required for the synthesis of GLP-1R and is cleaved after receptor synthesis. In the present study, we conducted an in-depth exploration towards the role of the putative SP in GLP-1R synthesis. A mutant GLP-1R without this sequence was expressed in HEK293 cells (human embryonic kidney 293 cells) and displayed normal functionality with respect to ligand binding and activation of adenylate cyclase. Thus the putative SP does not seem to be required for receptor synthesis. Immunoblotting analysis shows that the amount of GLP-1R synthesized in HEK293 cells is low when the putative SP is absent. This indicates that the role of the sequence is to promote the expression of GLP-1R. Furthermore, epitopes tagged at the N-terminal of GLP-1R are detectable by immunofluorescence and immunoblotting in our experiments. In conclusion, the present study points to different roles of SP in GLP-1R expression which broadens our understanding of the functionality of this putative SP of GLP-1R and possibly other Class B GPCRs.  相似文献   

18.
The hypothesis of this study was the urokinase-type plasminogen activator receptor (uPAR) is required for accumulation of inflammatory cells in injured skeletal muscle and for efficient muscle regeneration. Expression of uPAR was elevated at 1 and 3 days after cardiotoxin-induced muscle injury in wild-type mice before returning to baseline levels. Neutrophil accumulation peaked 1 day postinjury in muscle from both wild-type (WT) and uPAR null mice, while macrophage accumulation peaked between 3 and 5 days postinjury, with no differences between strains. Histological analyses confirmed efficient muscle regeneration in both wild-type and uPAR null mice, with no difference between strains in the formation or growth of regenerating fibers, or recovery of normal morphology. Furthermore, in vitro experiments demonstrated that chemotaxis is not different between WT and uPAR null macrophages. Finally, fusion of cultured satellite cells into multinucleated myotubes was not different between cells isolated from WT and uPAR null mice. These results demonstrate that uPAR is not required for the accumulation of inflammatory cells or the regeneration of skeletal muscle following injury, suggesting uPA can act independently of uPAR to regulate events critical for muscle regeneration.  相似文献   

19.
Cell cycle arrest in G0 and autophagy have features in common, but the inter-relationship between the two processes is not well defined. The anti-apoptosis molecules BCL-2 and BCL-xL promote G0 arrest through upregulation of p27 protein, which can also induce autophagy. We tested the hypothesis that autophagy was involved in the cell cycle arrest function of BCL-2 and BCL-xL. We found that in IL-3-dependent FL5.12 cells, NIH3T3 cells, and mouse embryo fibroblasts induced to arrest, treatment with 3-methyladenine did not affect the expected decrease in cell size and ribosomal RNA synthesis, or upregulation of p27 levels. Using the m5-7 ATG5-/- MEF cell line with doxycycline-regulated ATG5 expression, we demonstrated that autophagy was activated during serum withdrawal and contact inhibition, but inhibition of autophagy had no measurable effect on G0 arrest in parental or BCL-xL-expressing cells. Thus, our data indicate that, in cell culture models, autophagy occurs but is not required for entrance into quiescence or for the G0 function of BCL-2 or BCL-xL.  相似文献   

20.
Allelic exclusion prevents pre-B cells from generating more than one functional H chain, thereby ensuring the formation of a unique pre-BCR. The signaling processes underlying allelic exclusion are not clearly understood. IL-7R-dependent signals have been clearly shown to regulate the accessibility of the Ig H chain locus. More recent work has suggested that pre-BCR-dependent attenuation of IL-7R signaling returns the H chain loci to an inaccessible state; this process has been proposed to underlie allelic exclusion. Importantly, this model predicts that preventing pre-BCR-dependent down-regulation of IL-7R signaling should interfere with allelic exclusion. To test this hypothesis, we made use of transgenic mice that express a constitutively active form of STAT5b (STAT5b-CA). STAT5b-CA expression restores V(D)J recombination in IL-7R(-/-) B cells, demonstrating that IL-7 regulates H chain locus accessibility and V(D)J recombination via STAT5 activation. To examine the effects of constitutively active STAT5b on allelic exclusion, we crossed STAT5b-CA mice (which express the IgM(b) allotype) to IgM(a) allotype congenic mice. We found no difference in the percentage of IgM(a)/IgM(b)-coexpressing B cells in STAT5b-CA vs littermate control mice; identical results were observed when crossing STAT5b-CA mice with hen egg lysozyme (HEL) H chain transgenic mice. The HEL transgene enforces allelic exclusion, preventing rearrangement of endogenous H chain genes; importantly, rearrangement of endogenous H chain genes was suppressed to a similar degree in STAT5b-CA vs HEL mice. Thus, attenuation of IL-7R/STAT5 signaling is not required for allelic exclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号