首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
D Valenzuela  L H Schulman 《Biochemistry》1986,25(16):4555-4561
Four different structural regions of Escherichia coli tRNAfMet have been covalently coupled to E. coli methionyl-tRNA synthetase (MetRS) by using a tRNA derivative carrying a lysine-reactive cross-linker. We have previously shown that this cross-linking occurs at the tRNA binding site of the enzyme and involves reaction of only a small number of the potentially available lysine residues in the protein [Schulman, L. H., Valenzuela, D., & Pelka, H. (1981) Biochemistry 20, 6018-6023; Valenzuela, D., Leon, O., & Schulman, L. H. (1984) Biochem. Biophys. Res. Commun. 119, 677-684]. In this work, four of the cross-linked peptides have been identified. The tRNA-protein cross-linked complex was digested with trypsin, and the peptides attached to the tRNA were separated from the bulk of the tryptic peptides by anion-exchange chromatography. The tRNA-bound peptides were released by cleavage of the disulfide bond of the cross-linker and separated by reverse-phase high-pressure liquid chromatography, yielding five major peaks. Amino acid analysis indicated that four of these peaks contained single peptides. Sequence analysis showed that the peptides were cross-linked to tRNAfMet through lysine residues 402, 439, 465, and 640 in the primary sequence of MetRS. Binding of the tRNA therefore involves interactions with the carboxyl-terminal half of MetRS, while X-ray crystallographic data have shown the ATP binding site to be located in the N-terminal domain of the protein [Zelwer, C., Risler, J. L., & Brunie, S. (1982) J. Mol. Biol. 155, 63-81].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A stem and loop RNA domain carrying the methionine anticodon (CAU) was designed from the tRNA(fMet) sequence and produced in vitro. This domain makes a complex with methionyl-tRNA synthetase (Kd = 38(+/- 5) microM; 25 degrees C, pH 7.6, 7 mM-MgCl2). The formation of this complex is dependent on the presence of the cognate CAU anticodon sequence. Recognition of this RNA domain is abolished by a methionyl-tRNA synthetase mutation known to alter the binding of tRNA(Met).  相似文献   

4.
5.
Activation of methionine by Escherichia coli methionyl-tRNA synthetase   总被引:3,自引:0,他引:3  
G Ghosh  H Pelka  L H Schulman  S Brunie 《Biochemistry》1991,30(40):9569-9575
In the present work, we have examined the function of three amino acid residues in the active site of Escherichia coli methionyl-tRNA synthetase (MetRS) in substrate binding and catalysis using site-directed mutagenesis. Conversion of Asp52 to Ala resulted in a 10,000-fold decrease in the rate of ATP-PPi exchange catalyzed by MetRS with little or no effect on the Km's for methionine or ATP or on the Km for the cognate tRNA in the aminoacylation reaction. Substitution of the side chain of Arg233 with that of Gln resulted in a 25-fold increase in the Km for methionine and a 2000-fold decrease in kcat for ATP-PPi exchange, with no change in the Km for ATP or tRNA. These results indicate that Asp52 and Arg233 play important roles in stabilization of the transition state for methionyl adenylate formation, possibly directly interacting with complementary charged groups (ammonium and carboxyl) on the bound amino acid. Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS. The synthetases most closely related to MetRS (including those specific for Ile, Leu, and Val) also have a conserved arginine residue at the position corresponding to Arg233, suggesting that these conserved amino acids may play analogous roles in the activation reaction catalyzed by each of these enzymes. Trp305 is located in a pocket deep within the active site of MetRS that has been postulated to form the binding cleft for the methionine side chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The subunit structure of methionyl-tRNA synthetase from Escherichia coli   总被引:7,自引:0,他引:7  
G L Koch  C J Bruton 《FEBS letters》1974,40(1):180-182
  相似文献   

8.
L H Schulman  H Pelka    O Leon 《Nucleic acids research》1987,15(24):10523-10530
A protein affinity labeling derivative of E. coli tRNA(fMet) carrying lysine-reactive cross-linking groups has been covalently coupled to monomeric trypsin-modified E. coli methionyl-tRNA synthetase. The cross-linked tRNA-synthetase complex has been isolated by gel filtration, digested with trypsin, and the tRNA-bound peptides separated from the bulk of the free tryptic peptides by anion exchange chromatography. The bound peptides were released from the tRNA by cleavage of the disulfide bond of the cross-linker and purified by reverse-phase high-pressure liquid chromatography, yielding three major peptides. These peptides were found to cochromatograph with three peptides of known sequence previously cross-linked to native methionyl-tRNA synthetase through lysine residues 402, 439 and 465. These results show that identical lysine residues are in close proximity to tRNA(fMet) bound to native dimeric methionyl-tRNA synthetase and to the crystallizable monomeric form of the enzyme, and indicate that cross-linking to the dimeric protein occurs on the occupied subunit of the 1:1 tRNA-synthetase complex.  相似文献   

9.
10.
The 3D structure of monomeric C-truncated Escherichia coli methionyl-tRNA synthetase, a class 1 aminoacyl-tRNA synthetase, has been solved at 2.0 A resolution. Remarkably, the polypeptide connecting the two halves of the Rossmann fold exposes two identical knuckles related by a 2-fold axis but with zinc in the distal knuckle only. Examination of available MetRS orthologs reveals four classes according to the number and zinc content of the putative knuckles. Extreme cases are exemplified by the MetRS of eucaryotic or archaeal origin, where two knuckles and two metal ions are expected, and by the mitochondrial enzymes, which are predicted to have one knuckle without metal ion.  相似文献   

11.
Site-directed nuclease digestion and nonsense mutations of the Escherichia coli metG gene were used to produce a series of C-terminal truncated methionyl-tRNA synthetases. Genetic complementation studies and characterization of the truncated enzymes establish that the methionyl-tRNA synthetase polypeptide (676 residues) can be reduced to 547 residues without significant effect on either the activity or the stability of the enzyme. The truncated enzyme (M547) appears to be similar to a previously described fully active monomeric from of 64,000 Mr derived from the native homodimeric methionyl-tRNA synthetase (2 x 76,000 Mr) by limited trypsinolysis in vitro. According to the crystallographic three-dimensional structure at 2.5 A resolution of this trypsin-modified enzyme, the polypeptide backbone folds into two domains. The former, the N-domain, contain a crevice that is believed to bind ATP. The latter, the C-domain, has a 28 C-residue extension (520 to 547), which folds back, toward the N-domain and forms an arm linking the two domains. This study shows that upon progressive shortening of this C-terminal extension, the enzyme thermostability decreases. This observation, combined with the study of several point mutations, allows us to propose that the link made by the C-terminal arm of M547 between its N and C-terminal domains is essential to sustain an active enzyme conformation. Moreover, directing point mutations in the 528-533 region, which overhangs the putative ATP-binding site, demonstrates that this part of the C-terminal arm participates also in the specific complexation of methionyl-tRNA synthetase with its cognate tRNAs.  相似文献   

12.
13.
14.
Native methionyl-tRNA synthetase from Escherichia coli (a dimer of molecular weight 172,000) can be converted by mild proteolysis into a well-defined monomeric fragment of molecular weight 64,000. This fragment retains full specificity towards methionine and tRNAMet, and has unimpaired activity in both the activation and aminoacylation reactions.This paper describes the structure of the active fragment, as determined by an X-ray crystallographic study at 2.5 Å resolution using five heavy-atom derivatives. The elongated molecule (90 Å × 52 Å × 44 Å) contains several α-helices, which account for 43% of the residues. Three domains can be distinguished in the structure: (1) a central core beginning at the N-terminus, consisting of a five-stranded parallel pleated sheet with α-helices connecting the β-strands; (2) a second domain with less-ordered structure, inserted between the third and fourth strand of the central sheet; (3) a C-terminal domain, beginning after the fifth parallel strand, very rich in α-helices.These three domains are organized in a biglobular structure; one globule contains the first and the second domain (N-terminal globule), the other the third domain. The two globules, linked together by a single chain, are separated by a large cleft.The most salient feature of the structure is the presence, in the N-terminal domain, of a “nucleotide binding fold” similar to that first observed in dehydrogenases. This makes methionyl-tRNA synthetase, and possibly all aminoacyl-tRNA synthetases, a new member of this family of nucleotide binding proteins possessing the characteristic “Rossmann fold”.  相似文献   

15.
O Leon  L H Schulman 《Biochemistry》1987,26(22):7113-7121
A new method has been developed to couple a lysine-reactive cross-linker to the 4-thiouridine residue at position 8 in the primary structure of the Escherichia coli initiator methionine tRNA (tRNAfMet). Incubation of the affinity-labeling tRNAfMet derivative with E. coli methionyl-tRNA synthetase (MetRS) yielded a covalent complex of the protein and nucleic acid and resulted in loss of amino acid acceptor activity of the enzyme. A stoichiometric relationship (1:1) was observed between the amount of cross-linked tRNA and the amount of enzyme inactivated. Cross-linking was effectively inhibited by unmodified tRNAfMet, but not by noncognate tRNAPhe. The covalent complex was digested with trypsin, and the resulting tRNA-bound peptides were purified from excess free peptides by anion-exchange chromatography. The tRNA was then degraded with T1 ribonuclease, and the peptides bound to the 4-thiouridine-containing dinucleotide were purified by high-pressure liquid chromatography. Two major peptide products were isolated plus several minor peptides. N-Terminal sequencing of the peptides obtained in highest yield revealed that the 4-thiouridine was cross-linked to lysine residues 402 and 439 in the primary sequence of MetRS. Since many prokaryotic tRNAs contain 4-thiouridine, the procedures described here should prove useful for identification of peptide sequences near this modified base when a variety of tRNAs are bound to specific proteins.  相似文献   

16.
Native and trypsin-modified methionyl-tRNA synthetases from Escherichia coli were found to be inactivated by incubation in the presence of Co(III) complexes of ATP, stabilized either by imidazole or phenanthroline, or by oxidation in situ to Co(III) of the substrate ATP-Co(II). It has been shown that the inactivation proceeds by specific labeling of the catalytic ATP-Mg(II) site of the synthetases. The enzymes are completely inactivated by the incorporation of one cobalt atom and one ATP molecule per active site. The inactivated enzymes may be stored for a long period without significant reactivation or removal of the cobalt label. In the presence of dithiothreitol or 2-mercaptoethanol, the labeled enzymes recover full activity with concomittant release of the bound label molecules.  相似文献   

17.
18.
19.
J S Williams  P R Rosevear 《Biochemistry》1991,30(26):6412-6416
The Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) was shown to catalyze alpha-carbon hydrogen-deuterium exchange of L-selenomethionine, L-methionine, L-ethionine, and L-norleucine in the presence of deuterium oxide. The rate of alpha-proton exchange for L-methionine was shown to be linear with respect to delta MTS concentration. The exchange reaction showed saturation kinetics with apparent Km values of 21 and 4 mM in the absence and presence of saturating adenosine concentrations, respectively. As expected, delta MTS did not catalyze alpha-proton exchange of D-methionine since the enzyme has been shown to be specific for L-amino acids. In the absence of enzyme or in the presence of an equivalent concentration of Zn2+, no hydrogen-deuterium exchange was detected. The exchange reaction was not observed with L-methioninol, an analogue of L-methionine lacking the carboxylate group. These results suggest that the alpha-carboxylate group is a requirement for the delta MTS-catalyzed exchange reaction. The E. coli methionyl-tRNA synthetase (MTS) has previously been shown to be a zinc metalloprotein [Posorske, L. H., Cohn, M., Yanagisawa, N., & Auld, D. S. (1979) Biochim. Biophys. Acta 576, 128]. On the basis of the structural and mechanistic information available on MTS, we propose that the enzyme-bound zinc coordinates the carboxylate of the amino acid, while a base on the enzyme is responsible for exchange of the alpha-proton. The role of the enzyme-bound metal is to render the alpha-proton more acidic through coordination of the carboxylate group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Covalent modification of Escherichia coli tyrosyl-tRNA synthetase (TyrRS) by the 2',3'-dialdehyde derivative of tRNATyr (tRNAox) resulted in a time-dependent inactivation of both ATP-PPi exchange and tRNA aminoacylation activities of the enzyme. In parallel with the inactivation, covalent incorporation of approximately 1 mol of [14C]tRNATyrox/mol of the dimeric synthetase occurred. Intact tRNATyr protected the enzyme against inactivation by the tRNA dialdehyde. Treatment of the TyrRS-[14C]tRNATyr covalent complex with alpha-chymotrypsin produced two labeled peptides (A and B) that were isolated and identified by sequence analysis. Peptides A and B are adjacent and together span residues 227-244 in the primary structure of the enzyme. The three lysine residues in this sequence (lysines-229, -234, and -237) are labeled in a mutually exclusive fashion, with lysine-234 being the most reactive. By analogy with the known three-dimensional structure of the homologous tyrosyl-tRNA synthetase from Bacillus stearothermophilus, these lysines should be part of the C-terminal domain which is presumed to bind the cognate tRNA. Interestingly, the labeled TyrRS structure showed significant similarities to the structure around the lysine residue of E. coli methionyl-tRNA synthetase which is the most reactive toward tRNAMetf(ox) (lysine-335) [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号