首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of investment of limiting resources in such processes as competing for food and defense against natural enemies are shaped by trade-offs and constraints. In Drosophila melanogaster artificial selection for increased resistance to parasitoids results in a correlated decrease in larval competitive ability. Here we ask whether selection for competitive ability leads to a correlated reduction in parasitoid resistance. Replicated lines of D. melanogaster were maintained under crowded or uncrowded conditions for eight generations. As expected, the crowded lines evolved higher competitive ability (when tested against a common strain of fly). But instead of parasitoid resistance decreasing, we found a significant increase, and that this was associated with elevated densities of haemocytes in second-instar larvae. To understand these results we measured a variety of life-history traits in the two sets of lines. We find evidence that directly and indirectly selected changes in competitive ability are due to different mechanisms. We also ask why crowded conditions should select for increased resistance to parasitism, and conclude that it is unlikely to be due to correlated selection for resistance to other natural enemies, but might be due to correlated selection for better wound responses.  相似文献   

2.
Replicate lines of Drosophila melanogaster have been selected for increased resistance against one of two species of parasitoid wasp, Asobara tabida and Leptopilina boulardi. In both cases, it has been shown that an improved ability to mount an immunological defense against the parasitoid's egg is associated with reduced survival when the larvae are reared under conditions of low resource availability and thus high competition. We show here that in both sets of selected lines, lower competitive ability is associated with reduced rates of larval feeding, as measured by the frequency of retractions of the cephalopharyngeal skeleton. This suggests that the same or similar physiological processes are involved in the trade-off between competition and resistance against either parasitoid and shows how the interaction between adaptations for competition and natural enemy resistance may be mediated.  相似文献   

3.
Costs of resistance are widely assumed to be important in the evolution of parasite and pathogen defence in animals, but they have been demonstrated experimentally on very few occasions. Endoparasitoids are insects whose larvae develop inside the bodies of other insects where they defend themselves from attack by their hosts'' immune systems (especially cellular encapsulation). Working with Drosophila melanogaster and its endoparasitoid Leptopilina boulardi, we selected for increased resistance in four replicate populations of flies. The percentage of flies surviving attack increased from about 0.5% to between 40% and 50% in five generations, revealing substantial additive genetic variation in resistance in the field population from which our culture was established. In comparison with four control lines, flies from selected lines suffered from lower larval survival under conditions of moderate to severe intraspecific competition.  相似文献   

4.
The study examined the effects of evolution at two different larval densities on pre-adult and adult fitness traits. Five replicate selection lines each were cultured at either 50 or 150 larvae per vial, avoiding selection on development time, age at breeding or for adaptation to adult density, one or more of which factors has been a confounding variable in previous studies. Low density selection lines evolved extended development times at both growth densities. The extended development times were associated with greater adult body size at the lower growth density only, and particularly in females. The lines did not differ significantly in larval competitive ability at either growth density. At neither growth density did the early adult fertility of females or the lifespan of either sex differ between the lines from the two selection regimes, but at the lower growth density the late fertility of low density line females was significantly enhanced. The results suggest that larval density does have important effects on the expression and resolution of life history trade-offs in Drosophila melanogaster, but that these may be somewhat different from those reported in previous studies.  相似文献   

5.
Direct and correlated responses in selection for heat-shock resistance in adult and in larval Drosophila buzzatii were studied. Two lines were artificially selected for higher survival to heat stress as adults, and two other lines were reared under a fluctuating thermal environment as larvae, 35°C for 6 h and 25°C for 18 h, to “naturally” select for higher resistance as larvae. The latter two lines were duplicated after nine generations to yield additional lines to be “naturally” selected as larvae at a higher temperature, 38.2°C for 6 h. Control lines were maintained separately for the adult and larval selection lines. A significant direct response to selection was found for the adult selection lines. However, larvae of these adult selection lines were no more heat resistant than were larvae of the control lines. One of the two larval selection lines increased significantly in heat resistance as larvae. However, adult heat resistance was similar for lines selected as larvae and the corresponding control lines maintained at 25°C. Changes in developmental time accompanied changes in survival after stress in both sets of lines selected for increased heat resistance.  相似文献   

6.
Mechanisms of resistance to pathogens and parasites are thought to be costly and thus to lead to evolutionary trade-offs between resistance and life-history traits expressed in the absence of the infective agents. On the other hand, sexually selected traits are often proposed to indicate “good genes” for resistance, which implies a positive genetic correlation between resistance and success in sexual selection. Here I show that experimental evolution of improved resistance to the intestinal pathogen Pseudomonas entomophila in Drosophila melanogaster was associated with a reduction in male sexual success. Males from four resistant populations achieved lower paternity than males from four susceptible control populations in competition with males from a competitor strain, indicating an evolutionary cost of resistance in terms of mating success and/or sperm competition. In contrast, no costs were found in larval viability, larval competitive ability and population productivity assayed under nutritional limitation; together with earlier studies this suggests that the costs of P. entomophila resistance for nonsexual fitness components are negligible. Thus, rather than indicating heritable pathogen resistance, sexually selected traits expressed in the absence of pathogens may be sensitive to costs of resistance, even if no such costs are detected in other fitness traits.  相似文献   

7.
The level of HSP70 expression induced by a non-lethal high temperature was examined in lines selected for increased thermal resistance and in corresponding control lines of Drosophila buzzatii, in order to test if selection for high temperature resistance leads to an increased level of HSP70 expression. The lines used were selected for up to 64 generations either as adults or through all larval stages. In adult selection lines, hard selection was implemented every second generation after mild heat hardening. In larval selection lines, larvae were exposed each generation to laboratory "natural" selection. Generally lines selected as adults showed a higher HSP70 expression than did controls, both in third instar larvae and in adults. A strong negative response to selection of HSP70 expression was found in all lines that were selected at cycling temperatures during larval development. The results suggests that a trade off between heat resistance in form of HSP70 expression and fecundity/fertility are responsible for the level of HSP70 expression. The effect of the different methods of selection on HSP70 expression suggests that heat resistance constitutes more than one trait.  相似文献   

8.
Artificial selection is a powerful approach to unravel constraints on genetic adaptation. Although it has been frequently used to reveal genetic trade-offs among different fitness-related traits, only a few studies have targeted genetic correlations across developmental stages. Here, we test whether selection on increased cold tolerance in the adult stage increases cold resistance throughout ontogeny in the butterfly Bicyclus anynana. We used lines selected for decreased chill-coma recovery time and corresponding controls, which had originally been set up from three levels of inbreeding (outbred control, one or two full-sib matings). Four generations after having terminated selection, a response to selection was found in 1-day-old butterflies (the age at which selection took place). Older adults showed a very similar although weaker response. Nevertheless, cold resistance did not increase in either egg, larval or pupal stage in the selection lines but was even lower compared to control lines for eggs and young larvae. These findings suggest a cost of increased adult cold tolerance, presumably reducing resource availability for offspring provisioning and thereby stress tolerance during development, which may substantially affect evolutionary trajectories.  相似文献   

9.
The rate of food consumption is a major factor affecting success in scramble competition for a limited amount of easy-to-find food. Accordingly, several studies report positive genetic correlations between larval competitive ability and feeding rate in Drosophila; both become enhanced in populations evolving under larval crowding. Here, we report the experimental evolution of enhanced competitive ability in populations of D. melanogaster previously maintained for 84 generations at low density on an extremely poor larval food. In contrast to previous studies, greater competitive ability was not associated with the evolution of higher feeding rate; if anything, the correlation between the two traits across lines tended to be negative. Thus, enhanced competitive ability may be favored by nutritional stress even when competition is not intense, and competitive ability may be decoupled from the rate of food consumption.  相似文献   

10.
Resistance and tolerance are different strategies of plants to deal with herbivore attack. Since resources are limited and resistance and tolerance serve similar functions for plants, trade-offs between these two strategies have often been postulated. In this study we investigated trade-offs between resistance and one aspect of tolerance, the ability to regrow after defoliation. In order to minimize confounding effects of genetic background and selection history, we used offspring derived from artificial selection lines of ribwort plantain (Plantago lanceolata) that differed in their levels of leaf iridoid glycosides (IGs), allelochemicals that confer resistance to generalist herbivores, to study genetic associations with regrowth ability. We tested whether high-IG plants (1) suffer allocation costs of resistance in terms of reduced shoot and root growth, (2) have reduced regrowth ability (tolerance) after defoliation compared to low-IG plants, and (3) whether such costs are more pronounced under nutrient stress. High-IG plants produced fewer inflorescences and side rosettes than low-IG plants and showed a different biomass allocation pattern, but since neither the vegetative, nor the reproductive biomass differed between the lines, there was no evidence for a cost of IG production in terms of total biomass production under either nutrient condition. High-IG plants also did not suffer a reduced capacity to regrow shoot mass after defoliation. However, after regrowth, root mass of high-IG plants grown under nutrient-poor conditions was significantly lower than that of low-IG plants. This suggests that under these conditions shoot regrowth of high-IG plants comes at a larger expense of root growth than in low-IG plants. We speculate therefore that if there is repeated defoliation, high-IG plants may eventually fail to maintain shoot regrowth capacity and that trade-offs between resistance and tolerance in this system will show up after repeated defoliation events under conditions of low resource availability.  相似文献   

11.
1. Competition was created between the larvae of two life‐history strains of the blowfly Lucilia cuprina (Wiedemann) that have different requirements for larval resource acquisition. Adult females of one strain had the ability to mature eggs in the absence of adult feeding (autogeny) whereas the other strain lacked this ability. Autogeny shifts the burden of resource acquisition from adults to larvae, potentially leading to greater competition at this earlier life history stage. 2. A replacement series was used to determine the per‐capita competitive effect between strains relative to the intra‐strain effect, and density‐ and frequency‐dependent variation in this per‐capita effect was then evaluated. Evidence was found of competitive superiority of autogenous larvae when they occurred at a low frequency and low density, but their competitive ability was lost or reversed at higher frequencies and densities. 3. A dynamic competitive environment created by frequency and density dependence can account for the maintenance of genetic diversity for major life‐history traits. Such competition may explain why autogeny is rare in field populations of L. cuprina even although underlying genetic variation for the trait seems to be present.  相似文献   

12.
ABSTRACT Environments that are crowded with larvae of the fruit fly, Drosophila melanogaster, exhibit a temporal deterioration in quality as waste products accumulate and food is depleted. We show that natural selection in these environments can maintain a genetic polymorphism with one group of genotypes specializing on the early part of the environment and a second group specializing on the late part. These specializations involve trade-offs in fitness components. The early types emerge first from crowded cultures and have high larval feeding rates, which are positively correlated with competitive ability but exhibit lower absolute viability than the late phenotype, especially in food contaminated with the nitrogenous waste product, ammonia. The late emerging types have reduced feeding rates but higher absolute survival under conditions of severe crowding and high levels of ammonia. Organisms that experience temporal variation within a single generation are not uncommon, and this model system provides some of the first insights into the evolutionary forces at work in these environments.  相似文献   

13.
Phenoloxidase (PO) is an important component of the insect immune system and is frequently used to measure an individual's immune defence ability. However, evidence documenting positive correlations between the immune assay and resistance against pathogens is scarce and contradictory. We used replicate lines of yellow dung flies Scathophaga stercoraria (L.) with different PO levels to investigate whether PO levels affect resistance against parasitic mites and entomopathogenic fungi. Prevalence of flies exposed to pathogens was the same in all selection regimes, although pathogens clearly negatively affected fitness. PO measurements alone therefore do not necessarily predict overall resistance against pathogens. Furthermore, under starvation lines selected for high PO levels did not survive longer than those selected for low PO levels, irrespective of exposure to pathogens. This suggests that even if elevated immune levels increase an individual's ability to combat pathogens, the benefits may not outweigh the costs of increased investment in immunity.  相似文献   

14.
Two sets of four replicate lines of Drosophila melanogaster were selected for large and small thorax with controls. F, progeny of crosses between the selected lines within each size category showed (a) a reduction in preadult viability in large lines relative to control and small lines when they were cultured at medium or high density in competition with a standard mutant marked competitor stock, and (b) an increase in larval development time in large lines relative to control and small lines. Natural selection for increased body size in adults may therefore be opposed by adverse effects on larval viability. The results are discussed in terms of the developmental mechanisms probably responsible for the change in body size. The preadult survival of the large and control lines was measured at three different temperatures, and there was no evidence for a significant interaction between size and temperature. The observed evolutionary increase in body size in response to reduced temperature in Drosophila must therefore involve either different genes from those subject to selection for size at a single temperature, or a fitness component other than preadult survival. There was no significant asymmetry in response to selection, and thorax length showed heterosis in crosses between the selected lines.  相似文献   

15.
Most life history traits are positively influenced by body size, while disadvantages of large size are poorly documented. To investigate presumed intrinsic costs of large body size in yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae), we allowed larvae from replicate lines artificially selected for small and large body size for 21 generations to compete directly with each other at 20°C (benign) and 25°C (stressful) and low and high food (dung) availability. Greater mortality of large line flies was evident at low food independent of temperature, suggesting a cost of fast growth and/or long development for genetically large flies during larval scramble competition under food limitation. Our results are congruent with a previous study assessing mortality when competing within body size lines, so no additional mechanisms affecting scramble or contest behavior of larvae need be invoked to explain the results obtained beyond the costs of longer development and faster growth. Thus, artificial selection producing larger yellow dung flies than occur in nature revealed some, albeit weak mortality costs of large body size that otherwise might have remained cryptic. We conclude, however, that these costs are insufficient to explain the evolutionary limits of large body size in this species given persistently strong fecundity and sexual selection favoring large size in both sexes.  相似文献   

16.
Resistance to low temperatures can vary markedly among invertebrate species and is directly related to their distribution. Despite the ecological importance of cold resistance this trait has rarely been studied genetically, mainly because low and variable fitness of offspring from cold-stressed mothers makes it difficult to undertake selection experiments and compare cold resistance of parents and offspring. One measure of cold resistance that varies geographically in Drosophila melanogaster and that is amenable to genetic analysis is chill-coma recovery. Three replicate lines of D. melanogaster were selected every second generation, for over 30 generations, for decreased recovery time following exposure to 0 degrees C. Correlated responses were scored to characterize underlying physiological traits and to investigate interactions with other traits. Lines responded rapidly to the intermittent selection regime with realized heritabilities varying from 33% to 46%. Selected lines showed decreased recovery time after exposure to a broad range of low temperatures and also had a lower mortality following a more severe cold shock, indicating that a general mechanism underlying cold resistance had been selected. The selection response was independent of plastic changes in cold resistance because the selected lines maintained their ability to harden (i.e. a short-term exposure to cool temperature resulted in decreased recovery time in subsequent chill-coma assays). Changes in cold resistance were not associated with changes in resistance to high temperature exposure, and selected lines showed no changes in wing size, development time or viability. However, there was a decrease in longevity in the selected lines due to an earlier onset of ageing. These results indicate that chill-coma recovery can be rapidly altered by selection, as long as selection is undertaken every second generation to avoid carry-over effects, and suggest that lower thermal limits can be shifted towards increased cold resistance independently of upper thermal limits and without tradeoffs in many life-history traits.  相似文献   

17.
Interactions within and between species sharing the same resources are characterised by competition or facilitation, and can be influenced by factors such as larval numbers and phenotypic plasticity of the interactions. The effect of larval density on the survival and relative growth rate of the stemborers Busseola fusca (Fuller) and Sesamia calamistis Hampson (both Lepidoptera: Noctuidae), and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) were studied, as well as the temporal plasticity of their competitive interactions. These stemborers attack maize crops (Zea mays L.) (Poaceae) in sub‐Saharan Africa. Experiments were conducted in the laboratory under controlled conditions at the optimum development temperature (25 °C) for the three species. Surrogate stems filled with artificial diet were intra‐ and interspecifically infested with larvae of each species. The effect of larval density on competition was studied at low (six larvae) and high (12 larvae) levels of infestation, whereas the temporal plasticity of competition was evaluated at 7, 14, 21, or 28 days after infestation. The two experiments involved single‐ and multi‐species infestation treatments. Larval numbers and wet mass in each artificial stem were recorded in each experiment. Survival and relative growth rate of the three species were significantly higher at low‐infestation levels when facing either intra‐ or interspecific competition. The intensity of competition was also temporally plastic among the species and increased as the duration of competition increased. These results are discussed in terms of general infestations of cereal crops by borers.  相似文献   

18.
Responses to short-term selection for knockdown resistance to heat (37°C) in Drosophila melanogaster reared under stressful (high larval density) and nonstressful (low larval density) conditions were compared. No difference in selection response between density treatments was found. A test of heat resistance (39°C) after pretreatment (37°C) did not reveal an increase in survival for selected lines as compared to controls. Flies reared at high density had higher knockdown resistance throughout the experiment. Resistance to heat was not associated with body size.  相似文献   

19.
In naturally polygamous organisms such as Drosophila, sperm competitive ability is one of the most important components of male fitness and is expected to evolve in response to varying degrees of male–male competition. Several studies have documented the existence of ample genetic variation in sperm competitive ability of males. However, many experimental evolution studies have found sperm competitive ability to be unresponsive to selection. Even direct selection for increased sperm competitive ability has failed to yield any measurable changes. Here we report the evolution of sperm competitive ability (sperm defense‐P1, offense‐P2) in a set of replicate populations of Drosophila melanogaster subjected to altered levels of male–male competition (generated by varying the operational sex ratio) for 55–60 generations. Males from populations with female‐biased operational sex ratio evolved reduced P1 and P2, without any measurable change in the male reproductive behavior. Males in the male‐biased regime evolved increased P1, but there was no significant change in P2. Increase in P1 was associated with an increase in copulation duration, possibly indicating greater ejaculate investment by these males. This study is one of the few to provide empirical evidence for the evolution of sperm competitive ability of males under different levels of male–male competition.  相似文献   

20.
Available experimental evidence suggests that there are genetic differences in the abilities of trees to compete for resources, in addition to non-genetic differences due to micro-site variation. The use of indirect genetic effects within the framework of linear mixed model methodology has been proposed for estimating genetic parameters and responses to selection in the presence of genetic competition. In this context, an individual’s total breeding value reflects the effects of its direct breeding value on its own phenotype and its competitive breeding value on the phenotype of its neighbours. The present study used simulated data to investigate the relevance of accounting for competitive effects at the genetic and non-genetic levels in terms of the estimation of (co)variance components and selection response. Different experimental designs that resulted in different genetic relatedness levels within a neighbourhood and survival were other key issues examined. Variances estimated for additive genetic and residual effects tended to be biased under models that ignored genetic competition. Models that fitted competition at the genetic level only also resulted in biased (co)variance estimates for direct additive, competitive additive and residual effects. The ability to detect the correct model was reduced when relatedness within a neighbourhood was very low and survival decreased. Selection responses changed considerably between selecting on breeding value estimates from a model ignoring genetic competition and total breeding estimates using the correct model. Our results suggest that considering a genetic basis to competitive ability will be important to optimise selection programmes for genetic improvement of tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号