共查询到20条相似文献,搜索用时 0 毫秒
1.
Morphological plasticity can influence adaptive divergence when it affects fitness components such as foraging performance. We induced morphological variation in pumpkinseed sunfish (Lepomis gibbosus) ecomorphs and tested for effects on foraging performance. Young-of-year pumpkinseed sunfish from littoral and pelagic lake habitats were reared each on a 'specialist diet' representing their native habitat-specific prey, or a 'generalist diet' reflecting a combination of native and non-native prey. Specialist and generalist diets, respectively, induced divergent and intermediate body forms. Specialists had the highest capture success on their native prey whereas generalist forms were inferior. Specialists faced trade-offs across prey types. However, pelagic specialists also had the highest intake rate on both prey types suggesting that foraging trade-offs are relaxed when prey are abundant. This increases the likelihood of a resource polymorphism because the specialized pelagic form can be favoured by directional selection when prey are abundant and by diversifying selection when prey resources are restricted. 相似文献
2.
Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus) 总被引:5,自引:0,他引:5
Summary Adaptive variation can exist at a variety of scales in biological systems, including among species, among local populations of a single species and among individuals within a single population. Trophic or resource polymorphisms in fishes are a good example of the lowest level of this hierarchy. In lakes without bluegill sunfish (Lepomis macrochirus), pumpkinseed sunfish (Lepomis gibbosus) can be trophically polymorphic, including a planktivorous limnetic form found in the pelagic habitat, in addition to the usual benthic form found in the littoral zone. In this paper we examine the degree to which morphological differences between the two forms are caused by genetic differences versus phenotypic plasticity. Adults from pelagic and littoral sites in Paradox Lake, NY, were bred separately and their progeny were raised in cages both in the open water and shallow water habitats of an artificial pond. The experimental design permitted two tests of genetic differences between the breeding stocks (in open and shallow water cages, respectively) and two tests of phenotypic plasticity (in the limnetic and benthic offspring, respectively). Limnetic progeny were more fusiform than benthic progeny raised in the same habitat. In addition, progeny of both stocks displayed limnetic-type characteristics when raised in the open water and benthic-type characteristics in the shallow water. Thus, genetic differences and phenotypic plasticity both contributed to the trophic polymorphism. Phenotypic plasticity and genetic differentiation accounted for 53 and 14%, respectively, of the variation in morphology. This study addresses the nature of subtle phenotypic differences among individuals from a single population that is embedded within a complex community, a condition that is likely to be the norm for most natural populations, as opposed to very large differences that have evolved in relatively few populations that reside in species-poor environments. 相似文献
3.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history. 相似文献
4.
Intrasexual variation in reproductive behaviour and morphology are common in nature. Often, such variation appears to result from conditional strategies in which some individuals (e.g. younger males or those in poor condition) adopt a low pay-off phenotype as a 'best of a bad job'. Alternatively, reproductive polymorphisms can be maintained by balancing selection, with male phenotypes having equal fitnesses at equilibrium, but examples from nature are rare. Many species of sunfish (genus Lepomis) are thought to have alternative male reproductive behaviours, but most empirical work has focused on the bluegill sunfish and the mating systems of other sunfish remain poorly understood. We studied a population of pumpkinseed sunfish (Lepomis gibbosus) in upstate New York. Field observations confirm the existence of two male reproductive strategies: 'parentals' were relatively old and large males that maintained nests, and 'sneakers' were relatively young and small males that fertilize eggs by darting into nests of parentals during spawning. The sneaker and parental male strategies appear to be distinct life-history trajectories. Sneaker males represented 39% of the males observed spawning, and sneakers intruded on 43% of all mating attempts. Microsatellite analyses revealed that sneaker males fertilized an average of 15% of the eggs within a nest. This level of paternity by sneaker males appears to be higher than seen in most other fishes, and preliminary analyses suggest that the two male reproductive strategies are maintained as a balanced polymorphism. 相似文献
5.
Hettyey A Vincze K Zsarnóczai S Hoi H Laurila A 《Journal of evolutionary biology》2011,24(5):1007-1019
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses. 相似文献
6.
Synopsis We investigated the ability of two congeneric species of sunfish to learn to forage on a novel prey item in feeding arenas
containing structured habitats. Eight bluegill sunfish and eight pumpkinseed sunfish were given the opportunity to forage
on whiteworms daily for 10 days. Each day, several behavioural measures were recorded for each fish. Both species of sunfish
learned to feed over the 10-day period but the bluegill sunfish learned to feed more quickly than the pumpkinseed sunfish.
Pumpkinseeds, however, attained a higher level of foraging efficiency. The differences in learning and foraging efficiency
were related to body morphology. 相似文献
7.
Species that occupy similar habitats are expected to show convergent phenotypes. If habitats are defined by the presence of predators, then traits that modify vulnerability to predation, including predator-induced phenotypic plasticity, should be similar within habitats. We tested this idea using larvae of six syntopic newt species belonging to the two Triturus clades. Behavioural plasticity induced by odonate predators was strongly dissimilar between the two main clades but similar within them. Morphological plasticity was variable among species, even between one pair of closely related species. A predation experiment tested whether differences between clades could be caused by differences in body size. Size-specific vulnerability differed between newts in the small-bodied and large-bodied clades, indicating that similar predators may affect the two clades differently. The results showed both similarity and dissimilarity in predator-induced phenotypic plasticity in syntopic larval newts although theory suggests that divergence is unlikely in such ecologically similar species. 相似文献
8.
We tested for adaptive population structure in the frog Rana temporaria by rearing tadpoles from 23 populations in a common garden experiment, with and without larval dragonfly predators. The goal was to compare tadpole phenotypes with the habitats of their source ponds. The choice of traits and habitat variables was guided by prior information about phenotypic function. There were large differences among populations in life history, behaviour, morphological shape, and the predator-induced plasticities in most of these. Body size and behaviour were correlated with predation risk in the source pond, in agreement with adaptive population divergence. Tadpoles from large sunny ponds were morphologically distinct from those inhabiting small woodland ponds, although here an adaptive explanation was unclear. There was no evidence that plasticity evolves in populations exposed to more variable environments. Much among-population variation in phenotype and plasticity was not associated with habitat, perhaps reflecting rapid changes in wetland habitats. 相似文献
9.
Colonization of a novel environment is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. Local adaptation in the new environment occurs through the accumulation and integration of character states that positively affect fitness. The role played by plastic traits in adaptation to a novel environment has generally been ignored, except for variable environments. We propose that if conditions in a relatively stable but novel environment induce phenotypically plastic responses in many traits, and if genetic variation exists in the form of those responses, then selection may initially favor the accumulation and integration of functionally useful plastic responses. Early divergence between ancestral and colonist forms will then occur with respect to their plastic responses across the gradient bounded by ancestral and novel environmental conditions. To test this, we compared the magnitude, integration, and pattern of plastic character responses in external body form induced by shallow versus open water conditions between two sunfish ecomorphs that coexist in four postglacial lakes. The novel sunfish ecomorph is present in the deeper open water habitat, whereas the ancestral ecomorph inhabits the shallow waters along the lake margin. Plastic responses by open water ecomorphs were more correlated than those of their local shallow water ecomorph in two of the populations, whereas equal levels of correlated plastic character responses occurred between ecomorphs in the other two populations. Small but persistent differences occurred between ecomorph pairs in the pattern of their character responses, suggesting a recent divergence. Open water ecomorphs shared some similarities in the covariance among plastic responses to rearing environment. Replication in the form of correlated plastic responses among populations of open water ecomorphs suggests that plastic character states may evolve under selection. Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations. 相似文献
10.
Mechanism of a plastic phenotypic response: predator-induced shell thickening in the intertidal gastropod Littorina obtusata 总被引:1,自引:0,他引:1
Phenotypic plasticity has been the object of considerable interest over the past several decades, but in few cases are mechanisms underlying plastic responses well understood. For example, it is unclear whether predator-induced changes in gastropod shell morphology represent an active physiological response or a by-product of reduced feeding. We address this question by manipulating feeding and growth of intertidal snails, Littorina obtusata, using two approaches: (i) exposure to predation cues from green crabs Carcinus maenas and (ii) reduced food availability, and quantifying growth in shell length, shell mass, and body mass, as well as production of faecal material and shell micro-structural characteristics (mineralogy and organic fraction) after 96 days. We demonstrate that L. obtusata actively increases calcification rate in response to predation threat, and that this response entails energetic and developmental costs. That this induced response is not strictly tied to the animal's behaviour should enhance its evolutionary potential. 相似文献
11.
The effects of thermal stratification and light gradients on the feeding behavior of pumpkinseeds, Lepomis gibbosus, were
tested in vertical aquarium columns. Successful captures, unsuccessful captures and unsuccessful searches by foraging sunfish
on Daphnia pulex were recorded. Clearance and feeding rates of the sunfish were lowest when prey densities remained high,
indicating that the Daphnia were occupying an area that could not be searched by the sunfish. Thermal stratification limited
the searching volume and prey availability of the sunfish, while creating a refuge for the Daphnia. Light intensities ≤ 4.2
× 10-3 W m-2 decreased the searching and capture abilities of the sunfish under isothermal conditions. Thermal stratification had more
of an effect than the light gradients, creating a refuge for the Daphnia causing them to be unavailable and less vulnerable
to predation by the sunfish.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
12.
ANDRZEJ J. JANUSZKIEWICZ BEREN W. ROBINSON 《Biological journal of the Linnean Society. Linnean Society of London》2007,90(1):25-36
Predation has important ecological and evolutionary consequences. Evolutionary responses to diversifying selection include genetic differentiation, the evolution of adaptive phenotypic plasticity, and the genetic differentiation of plastic responses between populations. We tested if pumpkinseed sunfish ( Lepomis gibbosus ) respond to predation cues by changing their external body form in functionally sensible ways. We then asked whether predation has influenced the divergence of coexisting littoral and pelagic ecomorphs, by testing for divergent predator-induced responses. Juvenile L. gibbosus of both ecomorphs were reared with and without predation cues supplied by walleye ( Sander vitreus ) feeding on L. gibbosus . Predation cues stimulated increased body depth and dorsal spine length, but no increase in anal spine length or pectoral fin size. The dorsal spines of pelagic ecomorphs also grew longer than did those of littoral ecomorphs, while positive body depth responses were similar in both ecomorphs. This is the second fish taxa in which predator-induced morphological responses have been found, and the first in which divergent responses have been detected between ecomorphs. This suggests that the developmental systems of L. gibbosus ecomorphs have diverged under selection related to predation. We propose that other 'resource polymorphisms' in fishes have evolved under selection arising from a variety of factors, including predation, and not just selection related to resource use. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 25–36. 相似文献
13.
14.
Predation is a major driving force in evolution. Predation has been shown to select for size, morphology, and camouflage. Many animals use camouflage to reduce predation risk. In some cases, individuals can adjust their pigmentation, enabling them a higher survival in a heterogeneous environment. Here, we show that the difference in pigmentation between juvenile perch individuals (Perca fluvuiatilis) occupying different environments (open water and vegetated habitats of lakes) is likely a consequence of predator selection. Lightly pigmented individuals have a higher chance of survival in open water whereas darker pigmented individuals survive better in vegetation. As a response to predators, individuals forced into the vegetation by predators developed darker skin whereas the skin of individuals forced into open water became lighter. In a common garden experiment, in the absence of predation, we found that pigmentation in juvenile perch is only due to plasticity and not to genetic variation. However, contrary to predictions, individuals raised in open water developed darker skin compared to individuals raised in vegetation. This may be a response to UV-stress. Overall, our results suggest that predation can be a strong selective agent on pigmentation differences among conspecifics occupying different habitats. 相似文献
15.
Marko PB 《Evolution; international journal of organic evolution》2005,59(3):554-564
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence. 相似文献
16.
Bird nestlings may be at risk not only from starvation but alsofrom predators attracted to the nest by parental feeding visits.Hence, parents could trade reduced visitation rates for a lowerpredation risk. Here, through field data and an experiment,we show plasticity in daily patterns of nest visitation in theSiberian jay, Perisoreus infaustus, in response to predatoractivity. In high-risk territories, jay parents avoided goingto the nest at certain times of the day and compensated by allocatingmore feeding effort to periods when predators were less active.Such modifications in provisioning routines allowed parentsin high-risk habitat to significantly lower the risk of providingvisitation cues to visually oriented corvid nest predators.These results indicate that some birds modify their daily nestvisitation patterns as a fourth mechanism to reduce predator-attractingnest visits in addition to the clutch size reduction, maximizationof food load-sizes, and prevention of allofeeding suggestedby Skutch. 相似文献
17.
Ariel Novoplansky 《Evolutionary ecology》2002,16(3):177-188
There has been a surge of interest in phenotypic plasticity in the last two decades. Most studies, however, are being carried out within relatively narrow disciplinary frameworks. Consequently, researchers differ not only in their scientific agenda; they often use different terminologies and conceptual frameworks even when studying the very same phenomena. The diversity of approaches has often generated parallel bodies of theory on subjects that can be best understood in broader interdisciplinary terms. This special issue points out the differences between the concepts and questions that are characteristic of various approaches. Bridging all gulfs may be impossible and not necessarily desirable, yet, awareness of the varied approaches should be instrumental in promoting interdisciplinary advances. It is the contribution to such awareness that is the major purpose of this special issue, and for this reason it deals with molecular, physiological, ecological and evolutionary approaches to the study of developmental plasticity. So as to focus the discussion, six topics have been selected, ranging from the fundamental essence of developmental plasticity to its implications to ecology and evolution. These topics were considered by scholars who were chosen for the diversity of their research, not only their expertise. Rather than a comprehensive body of theory, the current issue thus seeks the diversity of opinions on the discussed topics. It is hoped that the confrontation, in its original Latin sense, which includes bringing together and discussion, of scholars who are studying these phenomena at very different levels and from different points of view will generate new insights and promote future interdisciplinary research. 相似文献
18.
19.
20.
Teplitsky C Plenet S Léna JP Mermet N Malet E Joly P 《Journal of evolutionary biology》2005,18(1):180-190
Induced defences, such as the predator avoidance morphologies in amphibians, result from spatial or temporal variability in predation risk. One important component of this variability should be the difference in hunting strategies between predators. However, little is known about how specific and effective induced defences are to different types of predators. We analysed the impact of both pursuing (fish, Gasterosteus aculeatus) and sit-and-wait (dragonfly, Aeshna cyanea) predators on tadpole (Rana dalmatina) morphology and performance (viz locomotive performance and growth rate). We also investigated the potential benefits of the predator-induced phenotype in the presence of fish predators. Both predators induced deeper tail fins in tadpoles exposed to threat of predation, and stickleback presence also induced longer tails and deeper tail muscles. Morphological and behavioural differences resulted in better escape ability of stickleback-induced tadpoles, leading to improved survival in the face of stickleback predation. These results clearly indicate that specific morphological responses to different types of predators have evolved in R. dalmatina. The specific morphologies suggest low correlations between the traits involved in the defence. Independence of traits allows prey species to fine-tune their response according to current predation risk, so that the benefit of the defence can be maximal. 相似文献