首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The dysfunction of proteasomes and mitochondria has been implicated in the pathogenesis of Parkinson disease. However, the mechanism by which this dysfunction causes neuronal cell death is unknown. We studied the role of cyclin-dependent kinase 5 (Cdk5)-p35 in the neuronal cell death induced by 1-methyl-4-phenylpyrinidinium ion (MPP+), which has been used as an in vitro model of Parkinson disease. When cultured neurons were treated with 100 μm MPP+, p35 was degraded by proteasomes at 3 h, much earlier than the neurons underwent cell death at 12–24 h. The degradation of p35 was accompanied by the down-regulation of Cdk5 activity. We looked for the primary target of MPP+ that triggered the proteasome-mediated degradation of p35. MPP+ treatment for 3 h induced the fragmentation of the mitochondria, reduced complex I activity of the respiratory chain without affecting ATP levels, and impaired the mitochondrial import system. The dysfunction of the mitochondrial import system is suggested to up-regulate proteasome activity, leading to the ubiquitin-independent degradation of p35. The overexpression of p35 attenuated MPP+-induced neuronal cell death. In contrast, depletion of p35 with short hairpin RNA not only induced cell death but also sensitized to MPP+ treatment. These results indicate that a brief MPP+ treatment triggers the delayed neuronal cell death by the down-regulation of Cdk5 activity via mitochondrial dysfunction-induced up-regulation of proteasome activity. We propose a role for Cdk5-p35 as a survival factor in countering MPP+-induced neuronal cell death.Parkinson disease (PD)3 is the second most common neurodegenerative disease, characterized pathologically by degenerated dopaminergic neurons and ubiquitin-positive aggregates known as Lewy bodies (1). Most cases of PD are sporadic, but a small proportion of patients with PD have the familial form. Several causative genes have been identified for familial PDs, including α-synuclein (2), ubiquitin C-terminal hydrolase L1 (UCH-L1) (3), and parkin, an ubiquitin ligase E3 of the ubiquitin-proteasome system (4), implicating the impairment of the ubiquitin-proteasome pathway in the pathogenesis of PD. However, the mechanisms underlying the involvement of the ubiquitin-proteasome system in the development of PD are not yet understood.The 1-methyl-4-phenylpyrinidinium ion (MPP+), a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a neurotoxin used widely to induce dopaminergic neuronal cell death in in vitro models of PD (5). Previous studies have indicated that MPP+ induces neuronal cell death via several pathways, including the inhibition of complex I activity of the respiratory chain in mitochondria, leading to energy depletion, protein peroxidation, and DNA damage by producing reactive oxygen species and the induction of cytotoxic glutamate secretion (6, 7). However, the precise molecular pathway resulting in neuronal cell death remains to be identified.Cyclin-dependent kinase 5 (Cdk5) is a member of the Cdk serine/threonine kinase family. Cdk5 plays a role in a variety of neuronal activities including neuronal migration during central nervous system development (8, 9), synaptic activity in matured neurons (10), and neuronal cell death in neurodegenerative diseases (11, 12). Generally, when Cdk5 are activated by their respective activator cyclins, they function in cell cycle progression. However, unlike those cell cycle Cdk5, the kinase activity of Cdk5 is detected mainly in post mitotic neurons. This is because Cdk5 activators p35 and p39 are expressed predominantly in neurons (13, 14). The amount of p35 is the major determinant of Cdk5 activity, and it is normally a short-lived protein degraded by the ubiquitin-proteasome pathway (15, 16). However, in stressed neurons, the calcium-activated protease calpain cleaves p35 to the more stable and active form, p25 (1721). Hyperactivated or mislocalized Cdk5-p25 has been implicated in the pathogenesis of numerous neurodegenerative disorders including PD and Alzheimer disease. In the case of PD, Cdk5 and p35 are found in the Lewy bodies of the dopaminergic neurons of the brain (22, 23). Cdk5 is activated by p25 and is required for cell death in mouse models of PD induced with MPTP (24) or 6-hydroxydopamine (25). It has been shown that Cdk5-p25 in MPTP-treated neurons phosphorylates the survival factor, myocyte enhancer factor 2 (MEF2), to inactivate it, leading to cell death (26, 27). However, further studies are required to clarify the involvement of p35 metabolism in the PD pathway.Contrary to its role in cell death progression, recent studies have also suggested a survival function for Cdk5 in maintaining survival signals or counteracting apoptotic signals. For example, Cdk5 inhibits c-Jun phosphorylation by c-Jun-N-terminal protein kinase 3, which is activated by UV irradiation (28). Cdk5 also promotes the survival of neurons by activating Akt through the well known neuregulin/phosphatidylinositol 3-kinase (PI3K) survival pathway, which leads to the down-regulation of proapoptotic factors (29). Cdk5 attenuates cell death either by up-regulating Bcl-2 through the phosphorylation of ERK (30) or by phosphorylating Bcl-2 to maintain its neuroprotective effect (31). However, whether Cdk5 acts as the anti-apoptotic factor in the PD model of neuronal cell death has not been determined.Here, we studied the role of Cdk5-p35 in the cell death of neurons treated with MPP+. We found that p35 was proteolysed in cultured neurons by either calpain or proteasomes depending on the concentration of MPP+ used. The proteasomal MPP+-induced degradation of p35 occurred earlier and at lower MPP+ concentrations than did its cleavage by calpain. MPP+ up-regulated the overall proteasome activity in the neurons by impairing the mitochondrial protein import system. A brief MPP+ treatment for up to ∼3 h was sufficient to induce delayed cell death at 24 h. The overexpression of p35 suppressed this MPP+-induced cell death, and depletion of p35 increased cell death. Together, these results implicate a role for Cdk5-p35 as a survival factor in MPP+-treated neurons.  相似文献   

9.
The capsid (CA) and nucleocapsid domains of the human immunodeficiency virus type 1 Gag polyprotein are separated by the p2 spacer peptide, which is essential for virus replication. Previous studies have revealed that p2 has an important role in virus morphogenesis. In this paper, we show that a crucial assembly determinant maps to the highly conserved N terminus of p2, which is predicted to form part of an α-helix that begins in CA. A mutational analysis indicates that the ability of the N terminus of p2 to adopt an α-helical structure is essential for its function during virus assembly. To prevent CA-p2 processing, it was necessary to mutate both the CA-p2 cleavage site and an internal cleavage site within p2. Virions produced by the double mutant lacked a conical core shell and instead contained a thin electron-dense shell about 10 nm underneath the virion membrane. These results suggest that p2 is transiently required for proper assembly, but needs to be removed from the C terminus of CA to weaken CA-CA interactions and allow the rearrangement of the virion core shell during virus maturation.The internal structural proteins of the human immunodeficiency virus type 1 (HIV-1) virion are synthesized in the form of a polyprotein (Pr55gag) which can efficiently form enveloped virus-like particles even when expressed alone (17). Pr55gag is modified by N-terminal myristylation, which is required for its stable association with the inner leaflet of the plasma membrane, where virus assembly occurs (4, 21). During or after the release of an immature particle from the plasma membrane, Pr55gag is cleaved by the viral protease. The major Gag cleavage products are matrix (MA), capsid (CA), nucleocapsid (NC), and p6 (25, 34). MA, which has a crucial role in the incorporation of the viral surface glycoproteins (10, 52), remains associated with the host cell-derived lipid envelope of the virion (16). CA forms the shell of the characteristic cone-shaped core of the mature virion which encloses the viral genomic RNA (16, 27). NC is essential for the encapsidation of the viral genome and is believed to coat the viral RNA within the core of the virion (2, 19, 30). The C-terminal p6 domain of Pr55gag facilitates the release of assembled viral particles from the cell surface (20) and is also needed for the incorporation of the regulatory viral protein Vpr (31, 39).Within the context of Pr55gag, two spacer peptides, p2 and p1, are located between CA and NC and between NC and p6, respectively (24, 25). Cleavage between CA and p2 is much slower than that between p2 and NC or between MA and CA (41). As a consequence, a CA-p2 protein (p25) accumulates in virus-producing cells (34). However, CA-p2 is normally found only in trace amounts in virions. In addition to p2, which comprises 14 amino acids (Ala-363 through Met-376) of the HIV-1HXB2 Gag precursor, a 10-amino-acid p2 fragment which extends from Ser-367 through Met-376 has been isolated from HIV-1 virions, indicating that the viral protease can also cleave within p2 (24, 25).Genetic analyses indicate that the region surrounding the CA-p2 boundary has an important role in particle assembly (21, 28, 50). Within CA, the N-terminal two-thirds forms a domain which appears dispensable for particle assembly but is required for the formation of the cone-shaped core of the mature virion (8, 44, 51). Recent structure determinations have revealed that the N-terminal HIV-1 CA domain is largely α-helical (18, 35). An exposed loop region between two α-helices interacts with the prolyl isomerase cyclophilin A (14), which leads to the incorporation of the cellular enzyme into virions (13, 48). The C-terminal third of CA forms a distinct domain which is essential for Gag oligomerization and particle assembly (8, 12, 44). While genetic and structural studies indicate that the N-terminal boundary of the CA assembly domain coincides with a uniquely conserved sequence, termed the major homology region (8, 15, 18, 32), its C-terminal boundary remains less well defined.The replacement of the scissile dipeptide Leu-Ala at the CA-p2 boundary with Ser-Arg in a mutant designated SVC-C2 led to the formation of grossly distorted capsid structures and caused a significant reduction in particle yield, indicating that the very C terminus of CA and/or p2 is crucial for HIV-1 morphogenesis (21). The possibility that the CA assembly domain extends into p2 is also suggested by the finding that the precise deletion of p2 from Pr55gag markedly reduced particle production (28). Electron microscopy revealed an accumulation of large electron-dense plaques underneath the plasma membrane in the absence of p2 (28), a phenotype which is similar to that observed for the SVC-C2 cleavage site mutant (21). However, the role of p2 in virus assembly remains controversial, because its removal appeared to have no effect on particle release in another study (41).In the present study, we focused on the N-terminal portion of p2, since it is considerably more conserved than the C terminus and because it is predicted to be part of an α-helix which begins in CA. The analysis of a panel of single-amino-acid changes shows that the conserved N terminus of p2 is essential for virus replication and indicates that its predicted α-helical conformation is crucial for virus assembly. In contrast, a deletion which removed 5 out of 10 amino acids between a previously reported cleavage site within p2 and NC delayed but did not abolish virus replication, demonstrating that this relatively variable region of p2 has no essential function in the viral life cycle. We also show that processing of CA-p2 can be essentially prevented by disrupting both the CA-p2 cleavage site and the reported Met-Ser site (25) within p2. Interestingly, the mutant particles often contained a prominent circular structure underneath the viral membrane, indicating that the presence of p2 at the C terminus of CA prevented the rearrangement of the core into a conical tube.  相似文献   

10.
11.
12.
13.
The cis-trans peptidylprolyl isomerase Pin1 plays a critical role in regulating a subset of phosphoproteins by catalyzing conformational changes on the phosphorylated Ser/Thr-Pro motifs. The phosphorylation-directed ubiquitination is one of the major mechanisms to regulate the abundance of p27Kip1. In this study, we demonstrate that Pin1 catalyzes the cis-trans conformational changes of p27Kip1 and further mediates its stability through the polyubiquitination mechanism. Our results show that the phosphorylated Thr-187-Pro motif in p27Kip1 is a key Pin1-binding site. In addition, NMR analyses show that this phosphorylated Thr-187-Pro site undergoes conformational change catalyzed by Pin1. Moreover, in Pin1 knock-out mouse embryonic fibroblasts, p27Kip1 has a shorter lifetime and displays a higher degree of polyubiquitination than in Pin1 wild-type mouse embryonic fibroblasts, suggesting that Pin1 plays a critical role in regulating p27Kip1 degradation. Additionally, Pin1 dramatically reduces the interaction between p27Kip1 and Cks1, possibly via isomerizing the cis-trans conformation of p27Kip1. Our study thus reveals a novel regulatory mechanism for p27Kip1 stability and sheds new light on the biological function of Pin1 as a general regulator of protein stability.Cellular differentiation and cell cycle inhibition are tightly controlled via sensitive molecular mechanisms. p27Kip1, a member of the Cip/Kip family, is an essential cell cycle inhibitor that functions largely during the G0/G1 phase where it promotes the assembly of the cyclin D1-CDK4 complex and inhibits the kinase activity of the cyclin E-CDK2 complex in the G1-S phase (14). Several review articles have elegantly summarized and discussed the detailed cellular functions of p27Kip1 (16). p27Kip1 is also a phosphoprotein with multiple Ser/Thr phosphorylation sites, including Ser-10, Ser-178, and Thr-187, followed by a proline residue. Hence, these motifs are potential substrate sites for proline-directed kinases (5, 6). Compared with Ser-178, which has not yet been well studied, the phosphorylation of Ser-10 and Thr-187 has been well characterized to be important for the regulation of p27Kip1 function. For instance, Ser-10 has been found to be the major phosphorylation site of p27Kip1 (7) and to play an important role in regulating cell migration (810), although the regulation of Ser-10 phosphorylation is still not completely defined (11, 12).In contrast to Ser-10 and Thr-178, Thr-187 is the best characterized phosphorylation site on p27Kip1 and is known to regulate the complex formation of p27Kip1-cyclin E-CDK2 (12). In addition, it is also widely accepted that Thr-187 plays a crucial role in determining the abundance of mature p27Kip1 proteins. The phosphorylation of Thr-187 directs p27Kip1 to an SCFSkp2 ubiquitin ligase complex (consisting of Skp2-Skp1-Cks1-Cul1-Roc1), which in turn promotes the polyubiquitination and degradation of p27Kip1 (13, 14). The crystal structure of the Skp1-Skp2-Cks1-p27Kip1 phosphopeptide complex shows that p27Kip1 binds both Cks1 and Skp2 and that the C terminus of Skp2 and Cks1 forms the substrate recognition core of the SCF complex (15). Furthermore, the structure of this complex has revealed that the phosphorylation of Thr-187 in p27Kip1 is recognized by the phosphate-binding site of Cks1, indicating that Cks1 is not only a facilitator but also an indispensable component in p27Kip1 degradation machinery (15).Pin1 is a unique peptidyl-prolyl isomerase (PPIase)2 that recognizes only the phosphorylated Ser/Thr motif preceding a proline residue (16). In addition, Pin1 is very prominent in isomerizing the cis-trans conformation of prolyl-peptidyl bonds in its substrates, resulting in either the modification of their function (e.g. c-Jun (17), β-catenin (18), Bax (19), and Notch1 (20)) or modulation of their stability (e.g. cyclin D1 (21), p53 (22, 23), and NF-κB (24)). Loss of Pin1 in mice results in several phenotypes similar to those of cyclin D1-null mice (21) and neuronal degenerative phenotypes (2528), suggesting the conformational changes mediated by Pin1 may be crucial for the normal functioning of cells. Additionally, Pin1 also plays important roles in cancer and other cellular events, which have been extensively discussed in several recent review articles (2933).In this study, we show that Pin1 binds to p27Kip1, mainly through the phosphorylated Thr-187-Pro motif, and causes subsequent prolyl isomerization of this cell cycle protein. Moreover, we also find that Pin1 can protect p27Kip1 from degradation. Importantly, we demonstrate that by catalyzing conformational changes in p27Kip1, Pin1 hinders its association with Cks1, resulting in a reduction of polyubiquitination of p27Kip1 and protecting its degradation by SCFSkp2 complexes. Our results suggest that the cis-trans isomerization catalyzed by Pin1 represents a novel regulatory mechanism during post-phosphorylation of proteins and polyubiquitination-directed degradation pathways.  相似文献   

14.
15.
16.
17.
18.
Human concentrative nucleoside transporter 3 (hCNT3) utilizes electrochemical gradients of both Na+ and H+ to accumulate pyrimidine and purine nucleosides within cells. We have employed radioisotope flux and electrophysiological techniques in combination with site-directed mutagenesis and heterologous expression in Xenopus oocytes to identify two conserved pore-lining glutamate residues (Glu-343 and Glu-519) with essential roles in hCNT3 Na+/nucleoside and H+/nucleoside cotransport. Mutation of Glu-343 and Glu-519 to aspartate, glutamine, and cysteine severely compromised hCNT3 transport function, and changes included altered nucleoside and cation activation kinetics (all mutants), loss or impairment of H+ dependence (all mutants), shift in Na+:nucleoside stoichiometry from 2:1 to 1:1 (E519C), complete loss of catalytic activity (E519Q) and, similar to the corresponding mutant in Na+-specific hCNT1, uncoupled Na+ currents (E343Q). Consistent with close-proximity integration of cation/solute-binding sites within a common cation/permeant translocation pore, mutation of Glu-343 and Glu-519 also altered hCNT3 nucleoside transport selectivity. Both residues were accessible to the external medium and inhibited by p-chloromercuribenzene sulfonate when converted to cysteine.Physiologic nucleosides and the majority of synthetic nucleoside analogs with antineoplastic and/or antiviral activity are hydrophilic molecules that require specialized plasma membrane nucleoside transporter (NT)3 proteins for transport into or out of cells (14). NT-mediated transport is required for nucleoside metabolism by salvage pathways and is a critical determinant of the pharmacologic actions of nucleoside drugs (36). By regulating adenosine availability to purinoreceptors, NTs also modulate a diverse array of physiological processes, including neurotransmission, immune responses, platelet aggregation, renal function, and coronary vasodilation (4, 6, 7). Two structurally unrelated NT families of integral membrane proteins exist in human and other mammalian cells and tissues as follows: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family (3, 4, 6, 8, 9). ENTs are normally present in most, possibly all, cell types (4, 6, 8). CNTs, in contrast, are found predominantly in intestinal and renal epithelia and other specialized cell types, where they have important roles in absorption, secretion, distribution, and elimination of nucleosides and nucleoside drugs (13, 5, 6, 9).The CNT protein family in humans is represented by three members, hCNT1, hCNT2, and hCNT3. Belonging to a CNT subfamily phylogenetically distinct from hCNT1/2, hCNT3 utilizes electrochemical gradients of both Na+ and H+ to accumulate a broad range of pyrimidine and purine nucleosides and nucleoside drugs within cells (10, 11). hCNT1 and hCNT2, in contrast, are Na+-specific and transport pyrimidine and purine nucleosides, respectively (1113). Together, hCNT1–3 account for the three major concentrative nucleoside transport processes of human and other mammalian cells. Nonmammalian members of the CNT protein family that have been characterized functionally include hfCNT, a second member of the CNT3 subfamily from the ancient marine prevertebrate the Pacific hagfish Eptatretus stouti (14), CeCNT3 from Caenorhabditis elegans (15), CaCNT from Candida albicans (16), and the bacterial nucleoside transporter NupC from Escherichia coli (17). hfCNT is Na+- but not H+-coupled, whereas CeCNT3, CaCNT, and NupC are exclusively H+-coupled. Na+:nucleoside coupling stoichiometries are 1:1 for hCNT1 and hCNT2 and 2:1 for hCNT3 and hfCNT3 (11, 14). H+:nucleoside coupling ratios for hCNT3 and CaCNT are 1:1 (11, 16).Although much progress has been made in molecular studies of ENT proteins (4, 6, 8), studies of structurally and functionally important regions and residues within the CNT protein family are still at an early stage. Topological investigations suggest that hCNT1–3 and other eukaryote CNT family members have a 13 (or possibly 15)-transmembrane helix (TM) architecture, and multiple alignments reveal strong sequence similarities within the C-terminal half of the proteins (18). Prokaryotic CNTs lack the first three TMs of their eukaryotic counterparts, and functional expression of N-terminally truncated human and rat CNT1 in Xenopus oocytes has established that these three TMs are not required for Na+-dependent uridine transport activity (18). Consistent with this finding, chimeric studies involving hCNT1 and hfCNT (14) and hCNT1 and hCNT3 (19) have demonstrated that residues involved in Na+- and H+-coupling reside in the C-terminal half of the protein. Present in this region of the transporter, but of unknown function, is a highly conserved (G/A)XKX3NEFVA(Y/M/F) motif common to all eukaryote and prokaryote CNTs.By virtue of their negative charge and consequent ability to interact directly with coupling cations and/or participate in cation-induced and other protein conformational transitions, glutamate and aspartate residues play key functional and structural roles in a broad spectrum of mammalian and bacterial cation-coupled transporters (2030). Little, however, is known about their role in CNTs. This study builds upon a recent mutagenesis study of conserved glutamate and aspartate residues in hCNT1 (31) to undertake a parallel in depth investigation of corresponding residues in hCNT3. By employing the multifunctional capability of hCNT3 as a template for these studies, this study provides novel mechanistic insights into the molecular mechanism(s) of CNT-mediated cation/nucleoside cotransport, including the role of the (G/A)XKX3NEFVA(Y/M/F) motif.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号