首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

2.
3.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

4.
Diverse roles for MADS box genes in Arabidopsis development.   总被引:17,自引:1,他引:16       下载免费PDF全文
Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.  相似文献   

5.
MADS box genes expressed in developing inflorescences of rice and sorghum   总被引:16,自引:0,他引:16  
With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with the Arabidopsis AGL2 and AGL4 MADS box genes, are expressed in the floral meristem, in all the primordia, and in mature floral organs. High expression levels have also been found in developing kernels. The sorghum clone SbMADS1 is also homologous to AGL2 and AGL4: expression analysis and mapping data suggest that it is the ortholog of OsMADS24. The pattern of expression of SbMADS2, the other sorghum MADS box gene, suggests that it may play a role as a meristem identity gene, as does AP1 in Arabidopsis, to which it shows considerable homology. The four genes have been mapped on a rice RFLP genetic map: the results are discussed in terms of synteny among cereals. Received: 25 April 1996 / Accepted: 29 August 1996  相似文献   

6.
MADS box genes are known to perform important functions in the development of various plant organs. Although the functions of many MADS box genes have previously been elucidated, the biological function of the type I MADS box genes remains poorly understood. In order to understand the function and regulation of the type I MADS box genes, we conducted molecular genetic analyses of AGL28, a member of the Malpha class of type I genes. AGL28 was expressed in vegetative tissues in a photoperiod-independent manner, but not within the reproductive apex. This indicates that AGL28 plays a role in the vegetative phase. Overexpression of AGL28 caused precocious flowering via the upregulation of the expression of FCA and LUMINIDEPENDENS (LD), both floral promoters within the autonomous pathway. However, the loss of AGL28 function did not result in any obvious flowering time phenotype, which suggests that AGL28 may perform a redundant function. Collectively, our data suggest that AGL28 is a positive regulator of known floral promoters within the autonomous pathway in Arabidopsis.  相似文献   

7.
8.
9.
In vitro propagation of oil palm (Elaeis guineensis Jacq.) frequently induces a somaclonal variant called ‘mantled’ abnormality, in which the stamens of both male and female flowers are transformed into carpels. This leads to a reduced yield or complete loss of the harvest of palm oil. The high frequency of the abnormality in independent lines and the high reversal rate suggest that it is due to an epigenetic change. The type of morphological changes suggest that it involves homeotic MADS box genes that regulate the identity of the flower whorls. We have isolated a number of MADS box genes from oil palm inflorescences by a MADS box-directed mRNA display approach. The isolated partial cDNAs included genes that were likely to function at the initial stages of flowering as well as genes that may function in determination of the inflorescence and the identity of the flower whorls. For four genes that were homologous to genes known to affect the reproductive parts of the flower, full length cDNAs were isolated. These were a B-type MADS box gene which may function in the determination of stamen formation, a C-type gene expected to be involved in stamen and carpel formation, and two putative SEP genes which act in concert with the A-, B- and C-type MADS box gene in determining flower whorl formation. The B-type gene EgMADS16 was functionally characterized as a PISTILLATA orthologue; it was able to complement an Arabidopsis thaliana pi mutant. Whether EgMADS16, or any of the other EgMADS genes, are functionally involved in the mantled condition remains to be established.  相似文献   

10.
11.
12.
New MADS box domains have been cloned from Asparagus officinalis L. using PCR technology. Several clones share high homology with the Arabidopsis agamous gene while other clones appear to represent novel MADS box domains. These results show that extended PCR primers are useful for selectively amplifying conserved DNA binding domains across widely divergent plant taxa.Asparagus MADS box sequences are listed in GenBank with the following accession numbers: UO7330 (Asp 13), UO7331 (Asp 16), UO7332 (Asp 22), UO7333 (Asp 23), UO7334 (Asp 3), UO7335 (Asp 39), UO7336 (Asp 8), UO7337 (Asp 4)  相似文献   

13.
14.
H Huang  M Tudor  T Su  Y Zhang  Y Hu    H Ma 《The Plant cell》1996,8(1):81-94
MADS domain proteins are members of a highly conserved family found in all eukaryotes. Genetic studies clearly indicate that many plant MADS domain proteins have different regulatory functions in flower development, yet they share a highly conserved DNA binding domain and can bind to very similar sequences. How, then, can these MADS box genes confer their specific functions? Here, we describe results from DNA binding studies of AGL1 and AGL2 (for AGAMOUS-like), two Arabidopsis MADS domain proteins that are preferentially expressed in flowers. We demonstrate that both proteins are sequence-specific DNA binding proteins and show that each binding consensus has distinct features, suggestion a mechanism for specificity. In addition, we show that the proteins with more similar amino acid sequences have more similar binding sequences. We also found that AGL2 binds to DNA in vitro as a dimer and determined the region of AGL2 that is sufficient for DNA binding and dimerization. Finally, we show that several plant MADS domain proteins can bind to DNA either as homodimers or as heterodimers, suggesting that the number of different regulators could be much greater than the number of MADS box genes.  相似文献   

15.
Arabidopsis AGL13 is a member of the AGL6 clade of the MADS box gene family. GUS activity was specifically detected from the initiation to maturation of both pollen and ovules in AGL13:GUS Arabidopsis. The sterility of the flower with defective pollen and ovules was found in AGL13 RNAi knockdown and AGL13 + SRDX dominant‐negative mutants. These results indicate that AGL13 acts as an activator in regulation of early initiation and further development of pollen and ovules. The production of similar floral organ defects in the severe AGL13 + SRDX and SEP2 + SRDX plants and the similar enhancement of AG nuclear localization efficiency by AGL13 and SEP3 proteins suggest a similar function for AGL13 and E functional SEP proteins. Additional fluorescence resonance energy transfer (FRET) analysis indicated that, similar to SEP proteins, AGL13 is able to interact with AG to form quartet‐like complexes (AGL13–AG)2 and interact with AG–AP3–PI to form a higher‐order heterotetrameric complex (AGL13–AG–AP3–PI). Through these complexes, AGL13 and AG could regulate the expression of similar downstream genes involved in pollen morphogenesis, anther cell layer formation and the ovule development. AGL13 also regulates AG/AP3/PI expression by positive regulatory feedback loops and suppresses its own expression through negative regulatory feedback loops by activating AGL6, which acts as a repressor of AGL13. Our data suggest that AGL13 is likely a putative ancestor for the E functional genes which specifies male and female gametophyte morphogenesis in plants during evolution.  相似文献   

16.
Tzeng TY  Chen HY  Yang CH 《Plant physiology》2002,130(4):1827-1836
Two MADS box genes, Lily MADS Box Gene 2 (LMADS2) and Eustoma grandiflorum MADS Box Gene 1 (EgMADS1), with an extensive similarity to the petunia (Petunia hybrida) FLORAL BINDING PROTEIN 7/11 and Arabidopsis AGL11, were characterized from the lily (Lilium longiflorum) and lisianthus (Eustoma grandiflorum). The expression of LMADS2 and EgMADS1 mRNA was restricted to the carpel and was absent in the other flower organs or vegetative leaves. LMADS2 mRNA was detected mainly in ovules and weakly in style tissues of the carpel, whereas EgMADS1 mRNA was only expressed in the ovules. Transgenic Arabidopsis plants ectopically expressing LMADS2 or EgMADS1 showed similar novel phenotypes resembling 35S::AGAMOUS plants by significantly reducing plant size, flowering early, and losing inflorescence indeterminacy. Ectopic expression of these two genes also generated similar ap2-like flowers by inducing homeotic conversion of the sepals into carpel-like structures in which stigmatic papillae and ovules were observed. In addition, the petals were converted into stamen-like structures in the second whorl of 35S::LMADS2 and 35S::EgMADS1 transgenic Arabidopsis. Our data indicated that LMADS2 and EgMADS1 are putative D functional MADS box genes in lily and lisianthus with a function similar to C functional genes once ectopically expressed in Arabidopsis.  相似文献   

17.
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 ( SOC1 ) is one of the flowering pathway integrators and regulates the expression of LEAFY ( LFY ), which links floral induction and floral development. However, the mechanism by which SOC1, a MADS box protein, regulates LFY has proved elusive. Here, we show that SOC1 directly binds to the distal and proximal region of the LFY promoter where critical cis -elements are located. Intragenic suppressor mutant analysis shows that a missense mutation in the MADS box of SOC1 causes loss of binding to the LFY promoter as well as suppression of the flowering promotion function. The full-length SOC1 protein locates in the cytoplasm if expressed alone in protoplast transient expression assay, but relocates to the nucleus if expressed with AGAMOUS-LIKE 24 (AGL24), another flowering pathway integrator and a MADS box protein. The domain analysis shows that co-localization of SOC1 and AGL24 is mediated by the MADS box and the intervening region of SOC1. Finally, we show that LFY is expressed only in those tissues where SOC1 and AGL24 expressions overlap. Thus, we propose that heterodimerization of SOC1 and AGL24 is a key mechanism in activating LFY expression.  相似文献   

18.
19.
20.
该研究采用RT-PCR和RACE技术从春兰(Cymbidium goeringii)中分离到1个SEPALLATA3(SEP3)基因。序列分析表明,该基因含有1个732bp的开放阅读框(ORF),共编码243个氨基酸。系统进化树分析显示,该基因是MADS-box基因家族AP1/AGL9组SEP的同源基因,其编码蛋白与其它植物SEP3类蛋白具有较高的一致性,命名为CgSEP3(登录号为KF924272)。实时荧光定量分析表明,CgSEP3在春兰花器官中均有表达,其中在唇瓣、侧瓣和萼片中的表达量较高,在子房和蕊柱中的表达量较低;而且CgSEP3在花发育各个时期都有表达,在1~2cm的花芽中表达量最高,在盛开的花中的表达量最低。研究认为,CgSEP3基因可能在春兰花瓣和萼片的形成过程中具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号