首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conformational properties of (2'-5') and (3'-5') CpC have been determined by proton magnetic resonance spectroscopy at 220 MHz. The ribose ring structures are predominantly 3E with the exception of the ring from the 2'-phosphate fragment of C(2'-5')pC which exhibits an 2E pucker. Bases are oriented anti with respect to the ribose and the conformations about C4'-C5', C5'-O5', C3'-O3' (C2'-O2') are gg, g'g', and g+ in equilibrium g-, respectively. The dimers exist as mixtures of stacked (g+g+ and g-g- about the P-O(C) bonds) and unstacked species at 20 degrees C. Stacking is estimated to be 35% in both dimers.  相似文献   

2.
The 360 MHz NMR spectra of the base protons and the H1 protons of thirteen trinucleoside diphosphates have been analyzed. The sequences chosen represent all purine-pyrimidine sequences. The chemical shifts of the base protons give evidence for strong next nearest-neighbor effects in some oligonucleotides. Although increasing chain length usually increases nearest-neighbor base-base stacking, it is not always so. Comparing ApCpG, ApUpG and GpUpG to their component dimers, one finds a decrease in stacking of the center pyrimidine with the purine on either side. The coupling constants J 1'2' also show that these three trimers show less stacking for their terminal residues than expected from their component dimers. We conclude that the sequence Pu-Py-Pu favors a conformation in which the pyrimidine is bulged out and the two purines stack on each other.  相似文献   

3.
The solution conformations of adenosine, guanosine and inosine in liquid ND3 have been determined by NMR. Comparison of the Karplus analysis of the proton HR spectra of the ribose moiety obtained in this solvent with the data from aqueous solutions of A and I proves that the conformations of the nucleosides are very similar in both liquids. From the analysis of the vicinal coupling constants of the ring protons it has been deduced that the S state C(2')-endo is slightly preferred. The mole fraction in S approximates 0.6 for all three nucleosides. C-13 relaxation measurements have been applied in the determination of the correlation times for rotational diffusion. Only at temperatures below - 40 degrees C is the pseudo-rotation of the furanoside ring slowed down sufficiently for it not to contribute to the measured relaxation rates. From NOE studies and T1 measurements on the individual protons it is derived that the N, C(3')-endo, form of the ribose is correlated with an anti conformation of the base (Y approximately 210 degrees to 220 degrees) and the S, C(2')-endo, form of the ribose with a syn conformation of the base (Y approximately 30 degrees to 50 degrees). The glycosyl torsion angles derived for the two conformations of A, G, and I are equal within the limits of accuracy.  相似文献   

4.
Conformational analysis and 1H NMR spectral assignments have been carried out using COSY and RELAY methods for a series of related oligoribonucleotides including two pentamers with 5'-dangling bases. Intraresidue long-range five bond scalar coupling was observed between pyrimidine H5 and H1' protons in the COSY-45 spectra and this feature was useful for both assignment purposes and conformational analysis. The ribose ring conformations were predominantly C3'-endo with the C2'-endo population increasing at the 3'-terminus. The 5'-dangling bases were not stacked efficiently, exhibiting lower % C3'-endo values than their 3'-nearest neighbors. Backbone torsion angle population. beta t, gamma +, epsilon t, were determined using 1H-1H, 1H-31P, and 13C-31P coupling constants. From beta t and gamma + populations the U3-G4 step in CAUG was found to be less efficiently stacked than the C1-A2 and A2-U3 steps. This observation in solution is consistent with the fiber diffraction A-RNA model (S. Arnott, D.W.L. Hukins, S.D. Dover, W. Fuller and A.R. Hodgson, J. Mol. Biol. 81, 107-122, 1973) which also predicts poor stacking in a U-G dinucleotide. The epsilon t populations were greater than 65% for all C3'-O3' bonds and consistent with a right-handed A-RNA helix.  相似文献   

5.
S Yokoyama  F Inagaki  T Miyazawa 《Biochemistry》1981,20(10):2981-2988
An advanced method was developed for lanthanide-probe analyses of the conformations of flexible biomolecules such as nucleotides. The new method is to determine structure parameters (such as internal-rotation angles) and population parameters for local conformational equilibria of flexible sites, together with standard deviations of these parameters. As the prominent advantage of this method, the interrelations among local conformations of flexible sites may be quantitatively elucidated from the experimental data of lanthanide-induced shifts and relaxations and vicinal coupling constants. As a structural unit of ribonucleic acids, the molecular conformations and conformational equilibria of uridine 3'-monophosphate in aqueous solution were analyzed. The stable local conformers about the C3'-O3' bond are the G+ (phi' = 281 +/- 11 degrees) and G- (phi' = 211 +/- 8 degrees) forms. The internal rotation about the C3'-O3' bond and the ribose-ring puckering are interrelated; 97 +/- 5% of the C3'-endo ribose ring is associated with the G- form while 70 +/- 22% o the C2'-endo ribose ring is associated with the G+ form. An interdependency also exists between the internal rotation about the C4'-C5' bond and the ribose-ring puckering. These short-range conformational interrelations are probably important in controlling the dynamic aspects of ribonucleic acid structures.  相似文献   

6.
Conformational properties of branched RNA fragments in aqueous solution   总被引:1,自引:0,他引:1  
M J Damha  K K Ogilvie 《Biochemistry》1988,27(17):6403-6416
The conformational properties of branched trinucleoside diphosphates ACC, ACG, AGC, AGG, AUU, AGU, AUG, ATT, GUU, and aAUU [XYZ = X(2'p5'Y)3'p5'Z] have been studied in aqueous solution by nuclear magnetic resonance (1H, 13C), ultraviolet absorption, and circular dichroism. It is concluded from these studies that the purine ring of the central residue (X; e.g., adenosine) forms a base-base stack exclusively with the purine or pyrimidine ring of the 2'-nucleotidyl unit (Y; 2'-residue). The residue attached to the central nucleoside via the 3'-5'-linkage (Z; 3'-residue) is "free" from the influence of the other two heterocyclic rings. The ribose rings of the central nucleoside and the 2'- and 3'-residues exist as equilibrium mixtures of C2'-endo (2E)-C3'-endo (3E) conformers. The furanose ring of the central nucleoside (e.g., A) when linked to a pyrimidine nucleoside via the 2'-5'-linkage shows a higher preference for the 2E pucker conformation (e.g., AUG, AUU, ACG, ca. 80%) than those linked to a guanosine nucleoside through the same type of bond (AGU, AGG, AGC, ca. 70%). This indicates some correlation between nucleotide sequence and ribose conformational equilibrium. The 2E-3E equilibrium of 2'-pyrimidines (Y) shows significant, sometimes exclusive, preference (70-100%) for the 3E conformation; 3'-pyrimidines and 2'-guanosines have nearly equal 2E and 3E rotamer populations; and the ribose conformational equilibrium of 3'-guanosines shows a preference (60-65%) for the 2E pucker. Conformational properties were quantitatively evaluated for most of the bonds (C4'-C5', C5'-O5', C2'-O2', and C3'-O3') in the branched "trinucleotides" AUU and AGG by analysis of 1H-1H, 1H-31P, and 13C-31P coupling constants. The C4'-C5' bond of the adenosine units shows a significant preference for the gamma + conformation. The dominant conformation about C4'-C5' and C5'-O5' for the 2'-and 3'-nucleotidyl units is gamma + and beta t, respectively, with larger gamma + and beta t rotamer populations for the 2'-unit. The increased conformational purity in the 2'-residue, compared to the 3'-residue, is ascribed to the presence of an ordered (adenine----2'-residue) stacked state. The favored rotamers about C3'-O3' and C2'-O2' are epsilon- and epsilon'-, respectively. The conformational features of AUU and AGG were compared to those of their constitutive dimers A3'p5'G, A2'p5'G, A3'p5'U, and A2'p5'U and monomers 5'pG and 5'pU.  相似文献   

7.
All H,H, H,P and several C,P coupling constants, including those between C-4' and the vicinal phosphorus atom, have been determined for NADP+, NADPH coenzymes and for a 4,4-dimer obtained from one-electron electrochemical reduction of NADP+. From these data the preferred conformation of the ribose, that of the 1,4-dihydronicotinamide rings, and the conformation about bonds C(4')-C(5') and C(5')-O(5') were deduced. The preferred form of the 1,4- and 1,6-dihydropyridine rings and the conformation about the ring-ring junction were also obtained for all the other 4,4- and 4,6-dimers formed in the same reduction. All the dimers show a puckered structure, i.e., a boat form for the 1,4- and a twist-boat for the 1,6-dihydronicotinamide ring; both protons at the ring-ring junctions are equatorial and have preferred gauche orientation. On the contrary, the reduced coenzyme NADPH displays a planar or highly flexible conformation, rapidly flipping between two limiting boat structures. The conformation of the ribose rings, already suggested for the NADP coenzymes to be an equilibrium mixture of C(2')-endo (S-type) and C(3')-endo (N-type) puckering modes, has been reexamined by using the Altona procedure and the relative proportion of the two modes has been obtained. The S and N families of conformers have almost equal population for the adenine-ribose, whereas for the nicotinamide-ribose rings the S-type reaches the 90%. The rotation about the ester bond C(5')-O(5') and about C(4')-C(5'), defined by torsion angles beta and gamma respectively, displays a constant high preference for the trans conformer beta t (75-80%), whereas the rotamers gamma are spread out in a range of different populations. The values are distributed between the gauche gamma + (48-69%) and the trans gamma t forms (28-73%). The gamma + conformer reaches a 90% value in the case of NADP+ and NMN+. The conformations of the mononucleotides 5'-AMP, NMN+ and NMNH were also calculated from the experimental coupling constant values of the literature.  相似文献   

8.
13C-NMR of ribosyl ApApA, ApApG and ApUpG   总被引:2,自引:0,他引:2  
The chemical shifts as well as the 13C-31P coupling constants of the carbon-13 nuclei in single-stranded ApApA, ApApG, and ApUpG are sensitive to sequence and temperature. ApApA and ApApG have similar properties with large shielding (up to 1.7 ppm) of many of the base carbons upon decreasing the temperature from 70 degrees C to 11 degrees C; the base carbons have smaller shielding changes in ApUpG. Large shielding and deshielding effects are observed for the 1', 3', 4' and 5'-carbons over this temperature range. Analysis of the 13C-31P couplings measured at the 4' ribose carbons show that the population of the anti rotamer about O5'-C5' varies from 98 to 75%, and is higher in ApApA and ApApG than in ApUpG. The CCOP coupling data at 2' and 4' is consistent with a blend of the -antiperiplanar/-synclinal nonclassical rotamers about the C3'-O3' bond, varying from 89/11% in ApApG to 55/45% in ApUpG. The coupling and chemical shift data support the thesis that ApUpG is stacked much less than the other two molecules. The stacked forms of all three trinucleotides is most easily interpreted by a standard A-RNA model. It is not necessary to invoke the "bulged base" hypothesis [Lee, C.-H. and Tinoco, Jr., I. (1981) Biophysical Chemistry 1, 283-294; Lankhorst, P.P., Wille, G., van Boom., J.H., Altona, C., and Haasnoot, C.A.G. (1983) Nucleic Acids Research 11, 2839-2856] to explain the contrast in 13C spectroscopic properties of ApUpG in comparison to ApApG and ApApA.  相似文献   

9.
The preferred conformations of deoxyribo and ribonucleoside 3'-methylphosphonates are analysed by minimizing the conformational energy as a function of all the major parameters including the sugar ring for both the S- and R-isomers. The results show that neither the substitution nor the nature of the diastereomer affects significantly the preferred conformations compared to the naturally occurring nucleoside 3'-phosphates. The preferred range of C3'-O3' bond torsions or the phase angles of pseudorotation (P) of the sugar are unaffected. The chiral substitution on the phosphate always adopts a conformation distal to the secondary C3' carbon atom in the minimum energy conformational state. Further, it introduces certain restrictions on the preferred range of P-O3' torsions depending on the methylphosphonate configuration. Methylphosphonate, especially the S-isomer, renders the normal gauche- range of P-O3' bond torsions responsible for the stacked helical duplexes to be energetically unfavourable besides introducing a high energy barrier between trans and gauche conformations. Therefore it is suggested that duplexes with S-methylphosphonate may favour extended phosphodiester conformations. These factors explain the observed lower melting temperature as well as the downfield shifts in the 31P signals in duplexes containing the S-isomer.  相似文献   

10.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

11.
Duplex RNA adopts an A‐form structure, while duplex DNA interconverts between the A‐ and B‐forms depending on the environment. The C2′‐endo sugar pucker seen in B‐form DNA can occur infrequently in ribose sugars as well, but RNA is not understood to assume B‐form conformations. Through analysis of over 45,000 stacked single strand dinucleotide (SSD) crystal structure conformations, this study demonstrates that RNA is capable of adopting a wide conformational range between the canonical A‐ and B‐forms at the localized SSD level, including many B‐form‐like conformations. It does so through C2′‐endo ribose conformations in one or both nucleotides, and B‐form‐like neighboring base stacking patterns. As chemical reactions on nucleic acids involve localized changes in chemical bonds, the understanding of how enzymes distinguish between DNA and RNA nucleotides is altered by the energetic accessibility of these rare B‐form‐like RNA SSD conformations. The existence of these conformations also has direct implications in parametrization of molecular mechanics energy functions used extensively to model nucleic acid behavior., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 65–82, 2016  相似文献   

12.
A detailed 220-MHz NMR study has been made of the conformational properties for the homodinucleotide adenylyl-3' leads to 5'-adenosine, ApA, in D2O. Unambiguous signal assignments of all proton signals were made with the aid of selectively deuterated nucleotidyl units, ApA, ApA, and D-8ApA, and complete, accurate sets of NMR parameters were derived by simulation-iteration methods. Sets of limiting chemical shifts and coupling values were also obtained for ApA and constituent monomers 3'-AMP and 5'-AMP at infinite dilution and at identical ionization states for assessment of dimerization effects. Conformational properties were evaluated quantitatively for most of the conformational bonds of ApA and these are consistent with two compact folded dynamically averaged structures, a base-stacked right helical structure, I, characterized as anti, C3'-endo, g-, w,w' (320,330 degrees), g'g', gg, C3'-endo, anti, and a more loosely base-stacked loop structure, II, with anti, C3'-endo, g-, w,w' (80 degrees, 50 degrees), g'g', gg, C3'-endo, anti orientations. Dimerization produces a number of nucleotidyl conformational changes including a shift in ribose equilibrium C2'-endo (S) in equilibrium C3'-endo (N) in favor of C3'-endo in both Ap- and -pA (60:40 vs. 35:65 in monomers), a change in glycosidic torsion angle chiCN toward 0 degrees, and a greater locking-in of rotamers along bonds involved in the phosphodiester backbone. Moreover, there is clear evidence that the transitions from S leads to N forms and chiCN leads to 0 degrees are directly related to base stacking in ApA. Finally, ApA exists in solution as an equilibrium between I, II and an unstacked form(s) with as yet undetermined conformational features. Since C4'-C5', C5'-O5', and C3'-O3' bonds possess exceptional conformational stabilities, it is proposed that destacking occurs primarily by rotation about P-O5' and/or O3'-P. Predominant factors influencing the overall ApA conformation are thus base-base interaction and flexibility about P-O5' and O3'-P, with change of ribose conformation occurring in consequence of an alteration of chiCN, the latter in turn being governed by the need for maximum eta overlap of stacked adenine rings.  相似文献   

13.
The magnetic shielding constant of the different 13C and 1H nuclei of a deoxyribose are calculated for the C2' endo and C3' endo puckerings of the furanose ring as a function of the conformation about the C4'C5' bond. For the carbons the calculated variations are of several ppm, the C3' endo puckering corresponding in most cases to a larger shielding than the C2' endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose-3' and 5' phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides. The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

14.
Y S Latha  N Yathindra 《Biopolymers》1992,32(3):249-269
The preferred conformations of ribo and deoxyribo alpha-nucleosides and alpha-nucleotides, the stereoisomers of the naturally occurring beta-isomers, are worked out by minimizing the conformational energy as a function of all the major parameters including the sugar ring conformations along the pseudorotation path. The results of the studies bring out certain distinct conformational features that are at variance with their beta counterparts. The range of glycosyl conformations are found to be not only quite restricted here but favor predominantly the anti conformation. The syn glycosyl conformation for the entire region of P values are found to be energetically less favorable, with the barrier to anti in equilibrium with syn interconversion being higher especially in alpha-ribonucleosides. The energetically preferred range of pseudorotation phase angles (P) is also considerably restricted and P values corresponding to the C1'-exo range of sugars are highly unfavorable for alpha-nucleosides, in sharp contrast to the broad range of sugar ring conformations favored by beta-isomers. While both trans congruent to 180 degrees and skew congruent to 270 degrees conformations around the C3'-O3' (phi') bond are favored for alpha-3'-nucleotides with deoxyribose sugars, ribose sugars seem to favor only the skew values of phi'. Most interestingly and in sharp contrast to beta-stereoisomers, an energy barrier is encountered at P values corresponding to O4'-endo sugars. This suggests that the possible sugar pucker interconversion between C2'-endo/C3'-exo and C3'-endo/C2'-exo in alpha-anomers could take place only through the O4'-exo region. Likewise the possible path of anti in equilibrium with syn interconversion in alpha-nucleosides is not via high anti, in sharp contrast to beta-nucleosides. These observations should be borne in mind while assigning the sugar ring conformers in alpha-nucleosides and those containing them from nmr investigations. Comparison of the results with beta-anomers seem to suggest on the whole a lack of conformational variability or the restricted nature of alpha-stereoisomers. This could be one of the reasons for its nonselection in the naturally occurring nucleic acids.  相似文献   

15.
G F Leanz  G G Hammes 《Biochemistry》1986,25(19):5617-5624
The ionic strength dependence of the second-order rate constant for the association of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and chicken liver fatty acid synthase was determined. This rate constant is 7.2 X 10(7) M-1 s-1 at zero ionic strength and 25 degrees C; the effective charge at the cofactor binding sites is +0.8. The conformations of nicotinamide adenine dinucleotide phosphate (NADP+) and NADPH bound to the beta-ketoacyl and enoyl reductase sites were determined from transferred nuclear Overhauser effect measurements. Covalent modification of the enzyme with pyridoxal 5'-phosphate abolished cofactor binding at the enoyl reductase site; this permitted the cofactor conformations at the beta-ketoacyl and enoyl reductase sites to be distinguished. For NADP+ bound to the enzyme, the conformation of the nicotinamide-ribose bond is anti at the enoyl reductase site and syn at the beta-ketoacyl reductase site; the adenine-ribose bond is anti, and the sugar puckers are C3'-endo. Nicotinamide-adenine base stacking was not detected. Structural models of NADP+ at the beta-ketoacyl and enoyl reductase sites were constructed by using the distances calculated from the observed nuclear Overhauser effects. Because of the overlap of the resonances of several nonaromatic NADPH protons with the resonances of HDO and ribose protons, less extensive structural information was obtained for NADPH bound to the enzyme. However, the conformations of NADPH bound to the two reductases are qualitatively the same as those of NADP+, except that the nicotinamide moiety of NADPH is closer to being fully anti at the enoyl reductase site.  相似文献   

16.
Wang F  Elmquist CE  Stover JS  Rizzo CJ  Stone MP 《Biochemistry》2007,46(29):8498-8516
The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.  相似文献   

17.
The solution conformations of adenosine, guanosine and inosine in liquid ND3 have been determined by NMR. Comparison of the Karplus analysis of the proton HR spectra of the ribose moiety obtained in this solvent with the data from aqueous solutions of A and I proves that the conformations of the nucleosides are very similar in both liquids. From the analysis of the vicinal coupling constants of the ring protons it has been deduced that the S state C(2′)-endo is slightly preferred. The mole fraction in S approximates 0.6 for all three nucleosides. C-13 relaxation measurements have been applied in the determination of the correlation times for rotational diffusion. Only at temperatures below −40‡ C is the pseudorotation of the furanoside ring slowed down sufficiently for it not to contribute to the measured relaxation rates. From NOE studies and T1 measurements on the individual protons it is derived that the N, C(3′)-endo, form of the ribose is correlated with an anti conformation of the base (Y≈210‡ to 220‡) and the S, C(2′)-endo, form of the ribose with a syn conformation of the base (Y≈30‡ to 50‡). The glycosyl torsion angles derived for the two conformations of A, G, and I are equal within the limits of accuracy.  相似文献   

18.
N6-Methoxy-2',3',5'-tri-O-methyladenosine crystallizes in space group P2(1)2(1)2(1) with cell dimensions a = 4.693, b = 11.412, c = 31.741 A. Least-squares refinement of diffractometer data converged at R = 0.038. The location of a hydrogen atom at N1 and the observed bond lengths and bond angles indicate unequivocally the imino tautomer of the adenine moiety. The N6-methoxy group is oriented syn to N1 and the glycosidic torsion angle XCN is -3.6 degrees, i.e. in the anti range. The furanose ring has a C2'-exo/C3'- endo pucker (P = 0.9 degrees) and is unusually flattened (tau m = 30.0 degrees). The conformations of the O-methyl groups of the ribose ring are compared with those of monomethylated nucleosides, including the biologically important 2'-O-methyl nucleosides. Evidence is presented for the existence of C-H ... N intermolecular hydrogen bonds between adenine moieties. Bearing in mind that N6-methoxyadenosine is a promutagenic analogue, the results are compared with those for the corresponding promutagenic N4-methoxycytidine. They are also discussed in relation to the tautomerism, the conformation of the N6-methoxy group, and the associated base-pairing abilities in the absence and presence of polymerases.  相似文献   

19.
The specificity of the two intrasubunit cGMP binding sites of cGMP-dependent protein kinase was determined by measuring the ability of 46 cGMP analogs to compete with [3H]cGMP. Both sites of the enzyme exhibited high specificity for the ribose cyclic phosphate moiety, and lower specificity for the guanine moiety. Effects of modifications in the ribose cyclic phosphate moiety suggested that cGMP is bound at both sites by three hydrogen bonds at 2'-OH, 3'-O, and 5'-O. A negative charge in the cyclic phosphate is apparently required. Modifications of the pyrimidine part of guanine, particularly at C-1, generally caused selectivity for the rapidly exchanging site while modifications of the imidazole part of guanine at C-7 and C-8 caused selectivity for the slowly exchanging site. These increases in selectivity for a site were mainly due to losses in affinity of the other site. There was an apparent requirement of the intact amino group at C-2, particularly for the slowly exchanging site. Comparison of the molecular interactions of cAMP and cGMP with their specific protein kinases showed that both nucleotides are bound by similar forces in the 2', 3' and 5' region, both bases may be bound in syn conformation, but that each base moiety is bound by different molecular interaction, thus leading to the selectivity of the two enzymes. cGMP analogs which possessed strong selectivity for the rapidly exchanging site, but not those selective for the slowly exchanging site, stimulated the binding of [3H]cGMP. Only a few cGMP analogs were more potent than cGMP in stimulating protein kinase activity. The potency of cGMP analogs as stimulators of kinase activity correlated better with the mean binding affinity for both binding sites than with the affinity for either site alone. Two analogs added in combination were synergistic in kinase activation, particularly if one analog was selective for the slowly exchanging site and the other for the rapidly exchanging site. These observations are suggestive that cGMP binding at the rapidly exchanging site stimulates cGMP binding at the slowly exchanging site and that both sites are involved in the activation process.  相似文献   

20.
As part of a study on the conformation of polynucleotides and nucleic acids the preferred conformations of the model conpound dimethyl phosphate are worked out using potential energy functions. In calculating the total potential energy associated with the conformation, nonbonded, torsional, and electrostatic terms have been considered. The variation of the total conformational energy is represented as a function of two torsion angles ? and ψ which are the rotations about the two phosphoester bonds. The most stable conformations are found to be the gauchegauche conformations about these bonds. The conformations observed for phosphodiesters in the solid state and in the proposed structures of polynucleotides and nucleic acids cluster around the minimum. Also, regions of minimum energy correspond well with the typical allowed regions of a representative dinucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号