首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The humoral influence of cells of hemopoietic organs of chicken embryos of different terms on the development of the colony and cluster formation of mononuclears of the bone marrow of mice was studied in joint cultivation in two-compartment cylindrical diffuse microchambers. The process of formation of colonies and clusters is inhibited by cells of the yolk sac on the 2nd-4th day of the development, by cells of the liver on the 8th-12th day, of the spleen on the 13th-18th day and of the bone marrow--on the 15th day. The yolk sac cells were found to have most considerable inhibiting influence on proliferation and differentiation of cells on the 2nd day of the development of chicken embryo. The yolk sac cells on the 6th day stimulate the formation of colonies and clusters. The yolk sac, beginning from the 4th day of the development, and the liver release humoral factors promoting the formation of erythroid colonies. The erythroid colonies are formed but when cultivated on the vascular membrane of the chicken embryo; the erythroid colonies are not formed when cultivated in the abdominal cavity of mice. Local erythropoietinoid factors are not synthetized by the spleen and bone marrow cells. A supposition is put forward that a combination of the local inhibiting and erythropoietic effects promotes the erythroid differentiation of cells.  相似文献   

2.
Mouse bone marrow cells (BMC) were subjected to countercurrent centrifugal elutriation and subsequently separated on the basis of light scatter and fluorescence intensity after being labeled with the supravital dye Rhodamine 123 (Rh-123). The sorted cells were then assayed for their in vivo spleen colony-forming ability (day -8, -12, and -16 CFU-S) and their ability to repopulate the bone marrow or spleen over a 13-day period with CFU-S-12, CFU-GM, or nucleated cells. Cells with marrow repopulating ability (MRA), as measured by the ability of the sorted cells to repopulate the marrow with secondary CFU-S-12 or CFU-GM, had low affinity for Rh-123. These cells showed minimal spleen colony-forming ability, and the ratio of MRA to CFU-S-12 in this preparation was 309. Cells with spleen repopulating ability (SRA), CFU-S-16, CFU-S-12, and CFU-S-8 retained increasing amounts of Rh-123, respectively, and CFU-S-8 were almost exclusively found among cells with high Rh-123 affinity. These cells also included about half of all day-12 CFU-S, and the ratio of MRA to day-12 CFU-S was 0. The results show that MRA cells, SRA cells, CFU-S-16, CFU-S-12, and CFU-S-8 can be sequentially ordered on the basis of increasing mitochondrial activity. The data also demonstrate for the first time, and without the application of negative selection by the use of cytostatic agents, that MRA cells are a separate class of primitive hemopoietic stem cells that fully meet the criteria of pre-CFU-S.  相似文献   

3.
Ontogeny of IgE-bearing lymphocytes in the rat   总被引:2,自引:0,他引:2  
IgE-bearing lymphocytes were detected by immunofluorescence in the spleen of neonatal Hooded Lister strain rats within 24 hr after birth. The same cells were detected in the bone marrow as early as the 4th day after birth. Both fetal spleen and liver obtained 1 day before birth contained IgM-bearing cells but no detectable IgE-bearing cells. The proportion of IgE-bearing cells in the spleen and bone marrow increased during the neonatal period and reached an adult level within 3 to 4 weeks after birth. In adult Hooded Lister rats, IgE-bearing cells were 3 to 6% of total spleen cells and 1.5 to 2.2% of bone marrow cells. Most of the IgE-bearing cells from bone marrow cells. Most of the IgE-bearing cells from both newborn and adult animals carried IgM determinants on their surface. Capping experiments showed that epsilon chain determinants and mu chain determinants belonged to separate molecules. IgG2a-bearing lymphocytes were detected in the neonatal spleen as early as the 4th day after birth, but a significant number of these cells was not detected in the bone marrow until the 4th week. In newborn spleen the percentage of IgE-IgM double bearing cells was higher than that of IgG2a-bearing cells.  相似文献   

4.
In this work the attempt to estimate a nitric oxide (NO*) role in regulation of the number of pool haemopoietic stem cells at the irradiated mice was made. With this purpose the number of new compounds from dihydrothiazine-thiazoline line was synthesized, their NO-inhibiting activity was investigated in vivo by the method of ESR-spectroscopy of spin trap and their influence on an output endogenous spleen colonies (CFU-S-8) after the total sublethal y-irradiation of mice in a doze of 6 Gy was also investigated. Was shown, that the tested compounds reduced the contents of NO* in a liver tissue of mice which have received an injection of nitric oxide synthesis inductor - lipopolysaccharide, and also increased an output CFU-S-8 forming endogenous colonies in the spleen of the irradiated mice. Received data testify to perceptivity of search radioprotective agents among NO* synthesis inhibitors.  相似文献   

5.
This paper presents the results of the development of lymphatic and haemopoietic organs in pig fetuses of various ages. The thymus appears to be the first lymphatic organ in these fetuses as well as in other animal species so far studied. On the 77th day the thymus is fully morphologically developed. The accumulations of lymphocytes in the spleen appear on the 70th day. The development of periarteriolar formations takes place around the 84th day of gestation. Further development of lymphoid tissue in the lymph nodes, tongue (tonsilla lingualis) and intenstine is described. Lymphatic follicles were observed both in the tongue and the small intestine on the 77th day. The dynamics of haemopoietic activity in the liver and bone marrow is characterized. The germinal centers in lymphoid folicles were never observed as well as cells of the plasmatic series.  相似文献   

6.
The population dynamics of granulopoietic cells, B-lineage cells, and T lymphocytes were analyzed by immunofluorescence in mouse hemopoietic tissues as a function of age. Mac-1+ myeloid cells were present on day 11 of gestation in the liver, where they peaked shortly after birth and declined subsequently. Waves of myeloid population growth began in spleen and bone marrow by days 15 and 19, respectively. Mac-1+ cells increased in number to relatively low plateau levels in spleen by the 3rd wk after birth, whereas in the bone marrow higher plateau levels were reached around 3 mo of age. The 14.8 monoclonal antibody was utilized as one marker of B-lineage precursor cells. 14.8+ cells were detected in the liver on day 11 of gestation, reached peak numbers during the first week after birth and decreased thereafter. On day 15 and 19, 14.8+ cells were found in spleen and bone marrow, respectively, and progressively increased in numbers to reach plateau levels in both sites by 3 mo of age. Mu+ pre-B cells appeared in significant numbers in the 13-day fetal liver, reached a peak shortly after birth, and disappeared from the liver by the end of the second postnatal week. Pre-B cells were found in the spleen and bone marrow on days 15 and 19, respectively. In the spleen pre-B cells reached peak values at birth and disappeared 2 wk later. In spite of the sequential appearance of mu+ pre-B cells in fetal liver, spleen, and bone marrow, their sIgM+ B cell progeny appeared in all these hemopoietic tissues on day 17 of gestation. In the liver, sIgM+ B cells reached their peak at birth and declined thereafter. In the spleen and bone marrow, B cells increased to plateau levels between 1 and 4 mo of age. Thy-1.2+ T cells were relatively late acquisitions in all three hemopoietic tissues. Finally, the expression of the 14.8 antigen by mu+ cells was examined as a function of gestational age. While pre-B cells from day-13 fetuses had no detectable 14.8 antigen, the antigen was weakly expressed on the vast majority of the mu+ pre-B cells by day 17 of gestation. Newborn liver cells expressing 14.8 antigen were found to include a small proportion of cells with peroxidase+ granules. Thus, demonstration of rearrangement and expression of immunoglobulin genes may be required for precise identification of cells of B lineage early in ontogeny.  相似文献   

7.
On day 33 of gestation, foetal beagles were irradiated in utero (0.9 Gy of 60Co gamma-irradiation, 0.4 Gy/min). Foetal haematocytopoiesis was studied during the third trimester of gestation (days 42-55). Peripheral blood nucleated cell counts were 33 per cent lower than normal on day 44 and continued to be lower until day 49, when values became higher than normal. Splenic cellularities of irradiated pups on day 44 were more than 3 times those of the nonirradiated, but thereafter they were similar to normal. Differences in haemopoietic progenitor cell activity between irradiated and normal foetuses were observed. In comparison with the other foetal tissues, the foetal liver appeared to experience greater radiation injury. For example, on day 44, the irradiated liver BFU-E, CFU-E, and GM-CFC per 10(5) cells were almost fivefold lower than normal values. Spleens of irradiated foetal beagles contained a marked increase in all haemopoietic progenitor cells (BFU-E, CFU-E, and GM-CFC) and recognizable proliferative granulocytic cells and nucleated erythroid cells. The haemopoietic activity of the irradiated bone marrow during days 42-44 was similar to that of the irradiated spleen, and compensated for the damaged liver. However, unlike the irradiated spleen, the irradiated bone marrow had decreased BFU-E activity compared with the values for the nonirradiated bone marrow during days 48-55. Until day 50, the irradiated marrow contained fewer recognizable proliferative granulocytic cells but more nucleated erythroid cells.  相似文献   

8.
Spleen colonies produced by sublethally irradiated mouse bone marrow cells were compared to those produced by unirradiated marrow cells in lethally irradiated mice. Sublethally irradiated marrow cells gave rise to many fewer spleen colonies. At seven days of colony age, the ratio of erythroid colonies to granuloid colonies was lower (< 1) than for colonies formed by unirradiated marrow (2 to 3 or more). Delay of harvest of colonies to day 10 or 12 resulted in 6 to 11 fold increase in the ratio of erythroid to granuloid colonies due largely to the belated appearance of erythroid colonies.  相似文献   

9.
Macrophages are widely distributed in lymphohaemopoietic and other tissues of the normal and diseased adult, where they play an important role in host defence and repair. Although the development of haemopoiesis has been well studied in several species, the ontogeny of the mononuclear phagocyte system remains poorly understood. We have used a highly specific mAb, F4/80, to examine the distribution of mature macrophages in the developing mouse, with special reference to their presence in the haemopoietic microenvironment. Monocytes and macrophages were first seen in embryos on day 10 in the yolk sac and liver as well as in mesenchyme. In liver, spleen and bone marrow, there was expansion of this population associated with the initiation of haemopoiesis on days 11, 15 and 17, respectively. Macrophages in these sites formed part of the haemopoietic stroma and their extensively spread plasma membrane processes could be seen making intimate contacts with clusters of differentiating haemopoietic cells. F4/80+ cells were widely dispersed in undifferentiated mesenchymal tissue in organs such as lung, kidney and gut. Numbers of F4/80-labelled cells increased concomitantly with organ growth and local mitoses were evident, as well as actively phagocytic macrophages. Our studies establish that macrophages are among the earliest haemopoietic cells to be produced during development and that they are relatively abundant in fetal tissues in the absence of overt inflammatory stimuli. Their distribution is correlated with the sequential migration of haemopoiesis and they constitute a prominent component of the stroma in fetal liver, spleen red pulp and bone marrow. Apart from a role in haemopoietic cellular interactions, their highly developed endocytic and biosynthetic activities suggest that macrophages contribute major undefined functions during growth, turnover and modelling of fetal tissues.  相似文献   

10.
An inhibitor and stimulator of CFU-s proliferation can be obtained from haemopoietic tissue containing, respectively, relatively quiescent CFU-s (e.g. normal bone marrow) and proliferating CFU-s (e.g. regenerating bone marrow). Their effects on the proliferative behaviour of steady-state and regenerating marrow CFU-s, which produce colonies 7, 10 and 12 days post-transplantation have been investigated. The results demonstrate changing sensitivities of CFU-s to inhibitor and stimulator as they progress through a developmental age structure, 'Older' CFU-s (producing early spleen colonies) are more sensitive to stimulator, 'Younger' CFU-s (producing late spleen colonies) are more sensitive to inhibitor.  相似文献   

11.
These experiments examined the effect of a diet limited only in protein (4% by weight) on haemopoietic stem cells in mice. This diet places severe restrictions on growth and cell proliferation and this was reflected in lower numbers of colony forming units (CFUs) and in vitro colony forming cells (CFCs). Differences were apparent in the response of different organs to this stress; for instance, the incidence of spleen CFUs fell sharply from around 40/mg spleen tissue to 1-4/mg spleen tissue after 3 weeks on a low protein diet. This selective loss did not occur in bone marrow where total CFUs remained proportional to cellular content. Yet a third pattern was shown by thymus CFUs--although the numbers were low these increased from 16/thymus in normal mice to 132/thymus in deprived mice. This was the only organ examined which showed an increase. The effects of a return to a high protein (18%) diet showed that the spleen was the most responsive organ. By day 5 after the return to 18% protein the spleen contained as many CFUs per million cells as the bone marrow. During this time the content of CFU in the spleen had increased some 50-fold whereas bone marrow CFUs only doubled. The spleen assumes the major reconstructive role during the refeeding process.  相似文献   

12.
Abstract. Changes in the number of haemopoietic stem cells (CFU-s) were studied in rats during the recovery day and selected post-recovery days after an 18–19-day flight on biosatellites Cosmos 936 and Cosmos 1129 . There was a decrease in the CFU-s number of the bone marrow of rats on the recovery day. On the 6th day post-recovery the CFU-s number was still depressed, while on the 25th day post-recovery it was elevated above control value. The differentiation ratio of transplanted bone marrow cells was not altered by space flight.  相似文献   

13.
An inhibitor and stimulator of CFU-s proliferation can be obtained from haemopoietic tissue containing, respectively, relatively quiescent CFU-s (e.g. normal bone marrow) and proliferating CFU-s (e.g. regenerating bone marrow). Their effects on the proliferative behaviour of steady-state and regenerating marrow CFU-s, which produce colonies 7, 10 and 12 days post-transplantation have been investigated. The results demonstrate changing sensitivities of CFU-s to inhibitor and stimulator as they progress through a developmental age structure. ‘Older’ CFU-s (producing early spleen colonies) are more sensitive to stimulator, ‘Younger’ CFU-s (producing late spleen colonies) are more sensitive to inhibitor.  相似文献   

14.
These experiments examined the effect of a diet limited only in protein (4% by weight) on haemopoietic stem cells in mice. This diet places severe restrictions on growth and cell proliferation and this was reflected in lower numbers of colony forming units (CFUs) and in vitro colony forming cells (CFCs). Differences were apparent in the response of different organs to this stress; for instance, the incidence of spleen CFUs fell sharply from around 40/mg spleen tissue to 1 -4/mg spleen tissue after 3 weeks on a low protein diet. This selective loss did not occur in bone marrow where total CFUs remained proportional to cellular content. Yet a third pattern was shown by thymus CFUs–although the numbers were low these increased from 16/thymus in normal mice to 132/thymus in deprived mice. This was the only organ examined which showed an increase. The effects of a return to a high protein (18 %) diet showed that the spleen was the most responsive organ. By day 5 after the return to 18% protein the spleen contained as many CFUs per million cells as the bone marrow. During this time the content of CFU in the spleen had increased some 50-fold whereas bone marrow CFUs only doubled. The spleen assumes the major reconstitutive role during the refeeding process.  相似文献   

15.
Changes in the specific activity and amounts of 26S and 20S proteasome pools in rat spleen and liver during postnatal development and appearance in them of immune subunits were studied. Two decreases in chymotrypsin-like activity of the proteasome pools were recorded during the first three weeks after birth. The activity minimum fell on the 11th and 19th days, and the first decrease was more prolonged and pronounced than the second. The decrease in the specific activity of the 26S proteasome pools was associated with a reduction of their quantity. The 20S proteasome pools displayed no such decreases. Noticeable quantities of immune subunits LMP7 and LMP2 were revealed by Western blotting in the spleen on the 7th day and on the 19th day in the liver, concurrently with the beginning of the decrease in the proteasome activity. It was concluded that during the first three weeks of postnatal development the proteasome pools in rat spleen and liver were replaced twice, and in the spleen (a lymphoid organ) a qualitatively new pool containing immune subunits appeared nearly two weeks earlier than in the liver (a non-lymphoid organ). The appearance of immune proteasomes in different organs and tissues during some weeks after birth seems to explain the immune system inefficiency during embryogenesis and early postnatal development.  相似文献   

16.
When transplanting the bone marrow cells from adult C57BL mice to the lethally irradiated (CBA X C57BL) F1 hybrids of different age, the decrease of the colony forming activity of the stem haemopoietic cells was observed in the spleen of the older recipients, as compared with the 3 months old ones. The joint transplantation of the bone marrow and thymus cells resulted in both the cases in the stimulation of the growth of colonies. The number of endogenous colonies of haemopoietic cells arising in the spleen of animals following the sublethal irradiation was greater in younger hybrids. After the induction of the "transplant versus host" reaction by the lymph node or spleen cells from the CBA mice, the relative weight of spleen and regional lymph node, respectively, in the older recipients exceeded those in the younger ones.  相似文献   

17.
Hemopoietic changes in male C57BL/6Cum BR mice engrafted with Lewis lung carcinoma (3LL) were evaluated between day 7, when palpable tumors were present, to day 30 postengraftment. All experimental animals demonstrated decreasing hematocrits (down 40% by day 30) with concurrent leukocytosis which by day 30 postengraftment had reached levels 13.4 times normal. The myelocytic/erythrocytic ratio for normal animals was 1:3 (bone marrow: spleen). The ratio for engrafted animals ranged between 10:1 and 40:1. This apparent shift in production priorities is even more significant in light of the fact that femoral bone marrow cellularity had decreased by 33% on day 17. Splenomegaly, evident by day 7, was seven times control by day 17. Clonogenic analysis of erythroprogenitor cell concentrations revealed an inverse relationship between bone marrow and spleen. 27 days after engraftment, splenic populations demonstrated significant increases in colony forming unit-erythroid (115-fold), burst forming unit-erythroid (7.4-fold), whereas bone marrow concentrations had decreased (6-fold). This report suggests that initiation of 3LL tumor in mice results in a change in the degree of hematopoietic priorities and participation of erythroid organs.  相似文献   

18.
We investigated a haemopoietic stromal defect, in mice heterozygous for the Slj allele, during haemopoietic stress induced by treatment with bacterial lipopolysaccharides (LPS) or lethal total body irradiation (TBI) and bone-marrow cell (BMC) reconstitution. Both treatments resulted in a comparable haemopoietic stem cell (CFU-s) proliferation in Slj/+ and +/+ haemopoietic organs. There was no difference in committed haemopoietic progenitor cell (BFU-e and CFU-G/M) kinetics after TBI and +/+ bone-marrow transplantation in Slj/+ and +/+ mice. The Slj/+ mice were deficient in their ability to support macroscopic spleen colony formation (65% of +/+ controls) as measured at 7 and 10 days after BMC transplantation. However, the Slj/+ spleen colonies contained the same number of BFU-E and CFU-G/M as colonies from +/+ spleens, while their CFU-s content was increased. On day 10 post-transplantation, the macroscopic 'missing' colonies could be detected at the microscopic level. These small colonies contained far fewer CFU-s than the macroscopic detectable colonies. Analysis of CFU-s proliferation-inducing activities in control and post-LPS sera revealed that Slj/+ mice are normal in their ability to produce and to respond to humoral stem-cell regulators. We postulate that Slj/+ mice have a normal number of splenic stromal 'niches' for colony formation. However, 35% of these niches is defective in its proliferative support.  相似文献   

19.
Changes in the number of spleen exo-colonies and post-radiation repopulation of hematopoietic organs were studied in recipients upon injection of bone marrow treated with anti-brain serum (ABS) with and without thymocytes on days 9-14. It was shown that on days 9-11 colony formation in mice injected bone marrow treated with ABS was much lower than the control level. However, by day 14 the number of colonies increased drastically as compared to the control. Thymocyte supplementation normalized colony formation at any time of observation. Similar pattern is noted in post-radiation repopulation of spleen and bone marrow of mice injected bone marrow pretreated with ABS with or without thymocytes. It is assumed that ABS inactivates bone marrow cells participating in the regulation of CFUs proliferation.  相似文献   

20.
The influence of neutrophilic stimulation on hemopoietic stem cells was studied in mice with tumor-induced neutrophilia. Transfusions of marrow cells from normal and neutrophilic tumor-bearing mice into lethally irradiated normal and tumor-bearing mice were performed. The number and the erythroid:granuloid (E:G) ratio of day 7 colonies in the recipient spleens and bones as well as the size of spleen colonies of recipient animals were determined. The E:G ratio of spleen and bone marrow colonies between normal and tumor-bearing mouse recipients and the number of spleen colonies did not differ significantly in either experiment. However, spleen colonies which developed in tumor-bearing irradiated mice were significantly larger than those which developed in normal recipients in both experiments. These studies indicated that while the line of differentiation taken by hemopoietic stem cells was not affected by the neutrophilic influence of the tumor, the tumor-bearing host environment appeared to enhance proliferation of transfused stem cells and/or their descendants. The stimulators of granulocytopoiesis in this model of neutrophilia appear to act on a population of progenitor cells more mature than the stem cells capable of forming 7-day colonies in the spleen and bone marrow of irradiated recipient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号