首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell encapsulation provides cells a three-dimensional structure to mimic physiological conditions and improve cell signaling, proliferation, and tissue organization as compared to monolayer culture. Encapsulation devices often encounter poor mass transport, especially for oxygen, where critical dissolved levels must be met to ensure both cell survival and functionality. To enhance oxygen transport, we utilized perfluorocarbon (PFC) oxygen vectors, specifically perfluorooctyl bromide (PFOB) immobilized in an alginate matrix. Metabolic activity of HepG2 liver cells encapsulated in 1% alginate/10% PFOB composite system was 47-104% higher than alginate systems lacking PFOB. A cubic model was developed to understand the oxygen transport mechanism in the alginate/PFOB composite system. The theoretical flux enhancement in alginate systems containing 10% PFOB was 18% higher than in alginate-only systems. Oxygen uptake rates (OURs) of HepG2 cells were enhanced with 10% PFOB addition under both 20% and 5% O2 boundary conditions, by 8% and 15%, respectively. Model predictions were qualitatively and quantitatively verified with direct experimental OUR measurements using both a perfusion reactor and oxygen sensing plate, demonstrating a greater OUR enhancement under physiological O2 boundary conditions (i.e., 5% O2). Inclusion of PFCs in an encapsulation matrix is a useful strategy for overcoming oxygen limitations and ensuring cell viability and functionality both for large devices (>1 mm) and over extended time periods. Although our results specifically indicate positive enhancements in metabolic activity using the model HepG2 liver system encapsulated in alginate, PFCs could be useful for improving/stabilizing oxygen supply in a wide range of cell types and hydrogels.  相似文献   

2.
The applicability of the colorimetric 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays to measure cell growth and viability in hydrogel encapsulation systems was investigated using HepG2 liver cells encapsulated in alginate matrices. The MTT assay was effective in measuring viable cell density in alginate-encapsulated cell systems, demonstrating less variance and higher throughput capability than hemocytometry. The LDH assay was effective in measuring dead cell density in monolayer cultures and in alginate-encapsulated cells simply by measuring the LDH concentration secreted into the medium. Further validation of these assays was shown in two additional cell lines (rat muscle and mouse embryonic fibroblasts). The MTT and LDH assays are particularly significant in the rapid evaluation of in vitro cell encapsulation device design.  相似文献   

3.
D Acosta  C P Li 《In vitro》1979,15(11):929-934
Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hyposia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or non-lethal cellular injury was produced as reflected by a significant release of lactate dehydrogenase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per 1 and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures.  相似文献   

4.
Several questions concerning the survival of isolated neurons and neuronal stem and progenitor cells (NPCs) have not been answered in the past: (1) If lactate is discussed as a major physiological substrate of neurons, do neurons and NPCs survive in a glucose-free lactate environment? (2) If elevated levels of glucose are detrimental to neuronal survival during ischemia, do high concentrations of glucose (up to 40 mmol/L) damage neurons and NPCs? (3) Which is the detrimental factor in oxygen glucose deprivation (OGD), lack of oxygen, lack of glucose, or the combination of both? Therefore, in the present study, we exposed rat cortical neurons and NPCs to different concentrations of d-glucose ranging from 0 to 40 mmol/L, or 10 and 20 mmol/L l-lactate under normoxic and anoxic conditions, as well as in OGD. After 24 h, we measured cellular viability by biochemical assays and automated cytochemical morphometry, pH values, bicarbonate, lactate and glucose concentrations in the cell culture media, and caspases activities. We found that (1) neurons and NPCs survived in a glucose-free lactate environment at least up to 24 h, (2) high glucose concentrations >5 mmol/L had no effect on cell viability, and (3) cell viability was reduced in normoxic glucose deprivation to 50% compared to 10 mmol/L glucose, whereas cell viability in OGD did not differ from that in anoxia with lactate which reduced cell viability to 30%. Total caspases activities were increased in the anoxic glucose groups only. Our data indicate that (1) neurons and NPCs can survive with lactate as exclusive metabolic substrate, (2) the viability of isolated neurons and NPCs is not impaired by high glucose concentrations during normoxia or anoxia, and (3) in OGD, low glucose concentrations, but not low oxygen levels are detrimental for neurons and NPCs.  相似文献   

5.
Neurons and astrocytes differentially express isoenzymes of lactate dehydrogenase (LDH). The metabolic consequences for the variations in mRNA expression of LDH isoenzyme subtypes in neurons and astrocytes control cerebral vasoregulation. Moreover, cellular signalling consequences for functional neurovascular control may also be dependent on LDH isoenzyme subtype profiles. Initial computer simulations revealed glutamate-induced calcium waves in connected astrocytes, and showed concomitant changes in the expression of nitric oxide synthase (NOS) and lactic acid metabolism. To validate these findings, the nature and extent of glutamate-dependent signalling crosstalk in murine cell lines were investigated through correlated lactate levels and calcium upregulation. Neuro2A and C8D1A cells were separately treated with timed supernatant extracts from each other and their LDH1 and LDH5 isoenzyme responses were recorded. Western blot analysis showed LDH1/LDH5 isoenzyme ratio in the astrocytes to be positively correlated with Neuro2A-derived lactate levels estimated by the amplitude of 1.33-ppm spectral peak in 1H-NMR, and LDH1/LDH5 isoenzyme ratio in neurons is negatively correlated with CSD1A-derived lactate levels. Significant modulations of the calcium-responsive protein pCamKII levels were also observed in both cell lines, particularly correlations between pCamKII and lactate in C8D1A cells, thus explaining the calcium dependence of the lactate response. Together, these observations indicate that lactate is a key indicator of the metabolic state of these cell types, and may be a determinant of release of vasoregulatory factors.  相似文献   

6.
The regulatory effect of oocyte cytoplasm on the synthetic activity of transferred somatic cell nuclei was studied using an interspecific hybrid combination of Ambystoma texanum and Ambystoma mexicanum (axolotl). The enzymes lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) were used as markers of gene activity. In both species of salamanders, LDH is synthesized in the liver and oocytes, while ADH is tissue-specific being synthesized in the liver but not oocytes. Both LDH and ADH show species-specific patterns on starch gels which permit detection of enzymes synthesized by texanum liver nuclei following their transfer into axolotl oocytes. Analysis of recipient oocytes after 1-3 weeks in culture reveals the presence of newly synthesized texanum LDH but not ADH. These results indicate that the transferred texanum liver cell nuclei continue to synthesize a product (LDH) found in both liver cells and oocytes, but fail to synthesize the liver-specific product (ADH) which is normally absent in oocytes. Thus, in the case of ADH and LDH the oocyte cytoplasm appears to be able to regulate the synthetic activity of the transferred somatic cell nuclei so as to conform to the oocytes' normal synthetic output.  相似文献   

7.
Summary The viability of hybridoma cells grown in reactors is investigated with two methods: the Trypan Blue staining of dead cells and the release of the cytoplasmic lactate dehydrogenase (LDH). Linear correlations are found between the number of counted dead cells and the measured LDH activity in the supernatant both when cells are grown with and without oxygen limitations. However the release of LDH is significantly higher for the oxygen limited culture (620 IU LDH / 109 cells) than for the non-oxygen limited culture (270 IU LDH / 109 cells).  相似文献   

8.
Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O2 limited transport, which reduces their performance. This modeling study seeks to investigate if O2 carrying solutions consisting of mixtures of hemoglobin‐based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O2 transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O2 in the pseudo‐homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O2 concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O2 to cultured hepatocytes. Moreover, the in vivo O2 spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO2 of 80 mmHg. Therefore, we expect that PFC‐based oxygen carriers will be more efficient at transporting O2 at higher O2 levels (e.g., at an inlet pO2 of 760 mmHg, which corresponds to pure O2 in equilibrium with aqueous cell culture media at 1 atm). Biotechnol. Bioeng. 2010; 105: 534–542. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The effect of interfacial surfactant molecules on oxygen transfer through oil/water phase boundary has been studied in FlurO(2) (TM) emulsions, i.e., perfluorocarbon (PFC) emulsions developed as oxygen carriers in cell culture. Measurements of oxygen permeability were made with a polarographic oxygen electrode in pure PFCs and in emulsions with various PFC volume fractions. Comparison of the experimental results with the theoretically derived values of relative oxygen permeability clearly indicates that the mass transfer resistance caused by the interfacial surfactant layer in PFC emulsions is insignificant. Therefore, oxygen dissolved in the enclosed PFC phase is readily available to cells growing in the aqueous media and FlurO(2) emulsions with very fine emulsion particles (< 0.2 mum) can be used to effectively enhance gas/liquid interfacial oxygen transfer in bioreactors. The inadequacy in describing mass transfer in heterogeneous systems, such as the PFC emulsions, by conventional concentration-based oxygen diffusion coefficients has also been discussed.  相似文献   

10.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

12.
In Arctica islandica, a long lifespan is associated with low metabolic activity, and with a pronounced tolerance to low environmental oxygen. In order to study metabolic and physiological responses to low oxygen conditions vs. no oxygen in mantle, gill, adductor muscle and hemocytes of the ocean quahog, specimens from the German Bight were maintained for 3.5 days under normoxia (21 kPa=controls), hypoxia (2 kPa) or anoxia (0 kPa). Tissue levels of anaerobic metabolites octopine, lactate and succinate as well as specific activities of octopine dehydrogenase (ODH) and lactate dehydrogenase (LDH) were unaffected by hypoxic incubation, suggesting that the metabolism of A. islandica remains fully aerobic down to environmental oxygen levels of 2 kPa. PO(2)-dependent respiration rates of isolated gills indicated the onset of metabolic rate depression (MRD) below 5 kPa in A. islandica, while anaerobiosis was switched on in bivalve tissues only at anoxia. Tissue-specific levels of glutathione (GSH), a scavenger of reactive oxygen species (ROS), indicate no anticipatory antioxidant response takes place under experimental hypoxia and anoxia exposure. Highest specific ODH activity and a mean ODH/LDH ratio of 95 in the adductor muscle contrasted with maximal specific LDH activity and a mean ODH/LDH ratio of 0.3 in hemocytes. These differences in anaerobic enzyme activity patterns indicate that LDH and ODH play specific roles in different tissues of A. islandica which are likely to economize metabolism during anoxia and reoxygenation.  相似文献   

13.
Cytotoxicity of tellurite to cultured HeLa cells was examined by cell viability, lactate dehydrogenase (LDH) assay, and tellurite uptake. The experimental results show that the toxicity of tellurite depends on its concentrations and exposure time. HeLa cells exposed to tellurite for 2 h at 9.1 x 10(-4) to 4.5 x 10(-3) mmol/L did not exhibit cytotoxic effects as measured by cell viability. Exposure to tellurite for 24 h at the same concentrations markedly reduced the cell viability to 57% of the control during the first 5 minutes. Additionally, HeLa cells incubated at 2.7 x 10(-2) to 0.27 mmol/L of tellurite for 2 h retained 53% to 67% of cell viability. Even after 24 h exposure, the HeLa cells incubated at 9.1 x 10(-4) to 4.5 x 10(-2) mmol/L of tellurite still retained 57% to 66% of cell viability. Furthermore, tellurite toxicity was also demonstrated in supernatant of the culture at 37 degrees C by LDH assay. It was found that exposure to tellurite for 90 minutes did not stimulate LDH activity. However, tellurite uptake seems to be more sensitive than the cell viability and LDH activity release tests, as it significantly increases with the increasing of exposure time.  相似文献   

14.
Freeze-drying is commonly used to preserve probiotics, but it could cause cell damage and loss of viability. The cryoprotectants play an important role in the conservation of viability during freeze-drying. In this study, we investigated the survival rates of Lactobacillus reuteri CICC6226 in the presence of cryoprotectants such as sucrose, trehalose, and reconstituted skim milk (RSM). In addition, we determined the activities of hexokinase (HK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and ATPases immediately following the freeze-drying. The results showed that the differences in HK and PK activities with and without the cryoprotectants during freeze-drying were not significant, but cell viability and activities of LDH and ATPase were significantly different (P<0.01) prior to and after freeze-drying. Meanwhile, the results showed that the maintenance of the membrane integrity and fluidity was improved in the presence of the 10% trehalose or 10% RSM than other treatments during freeze-drying. These results have provided direct biochemical and metabolic evidence of injured cell during freeze-drying. Freeze-drying damaged membrane structure and function of cell and inactivated enzymes (LDH and ATPases). The results imply that LDH and ATPases are key markers and could be used to evaluate the effect of cryoprotectants on viability and metabolic activities of L. reuteri CICC6226 during freeze-drying.  相似文献   

15.
Incubation of boar spermatozoa in Krebs-Ringer-Henseleit medium with either 10 mM lactate or 10 mM citrate induced a fast and robust increase in the intracellular levels of ATP in both cases, which reached a peak after 30 sec of incubation. Utilization of both citrate and lactate resulted in the export of CO(2) to the extracellular medium, indicating that both substrates were metabolized through the Krebs cycle. Incubation with citrate resulted in the generation of extracellular lactate, which was inhibited in the presence of phenylacetic acid. This indicates that lactate is produced through the pyruvate carboxylase step. In addition, there was also a significant increase in tyrosine phosphorylation induced by both citrate and lactate. Boar sperm has a sperm-specific isoform of lactate dehydrogenase (LDH), mainly located in the principal piece of the tail. Kinetic studies showed that boar sperm has at least two distinct LDH activities. The major activity (with an estimated Km of 0.51 mM) was located in the supernatants of sperm extracts. The minor LDH activity (with an estimated Km of 5.9 mM) was associated with the nonsoluble fraction of sperm extracts. Our results indicate that boar sperm efficiently metabolizes citrate and lactate through a metabolic pathway regulated by LDH.  相似文献   

16.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

17.
18.
A mixture of heterotrophic bacteria and collection strains ofEscherichia coli andPseudomonas fluorescens were immobilized in calcium alginate or pectate gels. Comparison of respiratory activity, substrate uptake and biosynthetic capacity of immobilized cells showed that both types of carriers permit a prolonged preservation of metabolic activity but the transfer of substances through the gel is faster in the pectate. Morphological changes include some intracellular structures, partial shrinkage of the plasma membrane of immobilized cells, and transformation of a rod-like cell shape to an oval one.  相似文献   

19.
This paper describes the alginate encapsulation of preformed high-density 3-D HepG2 cell aggregates that guarantees good maintenance of liver-specific biomarker expression. The process involves forming a high-density (≥7 × 104 cells/aggregate) discoid 3-D cell aggregate in an ultrasound trap, which is subsequently recovered and encapsulated in alginate/CaCl2 hydrogel. Glucose secretion/consumption, lactate release, detoxifying enzyme capacity, cytokeratin-18 expression as well as hypoxia were characterized in encapsulated 3-D HepG2 aggregates over 10 days in culture. Encapsulated 3-D HepG2 aggregates released glucose into the media, although this ability was exhibited only after 1 day in culture and was subsequently lost over the ensuing 9 days. In contrast, lactate was constantly released into the media. Significantly more lactate was secreted after 3 days in culture indicating a more hypoxic environment and hence a higher rate of anaerobic glycolysis. Aggregates consistently expressed cytokeratin-18. Cytochrome P450-1A1 activity reached a maximum on day 1 of culture followed by a progressive reduction to basal levels, while P450-3A4 activity was up-regulated in a time-dependent manner reaching a peak on day 7 in culture. Glutathione-S-transferase activity, on the other hand, was at more physiological levels and remained constant over the 10-day culture period. The ultrasound trap allowed the rapid (within 5 min) generation of uniformly shaped and sized aggregates. The results reported here suggest that ultrasound-formed 3-D HepG2 aggregates can serve as alternative in vitro models providing a quick outlook on toxicity, in a tissue-mimetic manner, thus offering the future option of a cost-effective screening platform for pharmaceutical development.  相似文献   

20.
Summary Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hypoxia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or nonlethal cellular injury was produced as reflected by a significant release of lactate dehydro-genase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per l and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute and by a National Chicano Council on Higher Education Post-Doctoral Fellowship awarded to D. Acosta from the Ford Foundation. Additional support was provided to D. Acosta by a Faculty Research Assignment Award from the University of Texas Research Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号