首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lovastatin, a potent inhibitor of the mevalonate pathway, has been used in plant cell cycle studies to eliminate the cytosolic cytokinin biosynthesis. However, several implications can blur the results, as cytokinins may be alternatively formed from isopentenylpyrophosphate produced by the plastid 1-deoxy-xylulose 5-phosphate pathway and because the endogenous cytokinin levels oscillate considerably in the course of a cell cycle. In the work presented here, short- and long-term effects of lovastatin on suspension- cultured Nicotiana tabacum (L.) BY-2 cells were differentiated. The short-term experiments revealed a fast action of lovastatin, resulting in a significantly, though not completely, decreased content of endogenous cytokinins that became visible already after 10 min and was most pronounced after 30 min. But the impact of lovastatin on cell cycle progression depended also on the phase of the cell cycle at which it was administered. Lowering of the cytokinin level during the early S phase, when the endogenous cytokinin levels increased, delayed the S/G2 transition, whereas the same treatment in the late S phase, when the cellular cytokinin concentrations had already started to decrease, promoted it. Incubation periods longer than 48 h resulted in about 50% loss of viable of the cells and also in a reduced capability of division of the survivors. These cells later on resumed cell division. A second treatment with lovastatin of that culture again killed about 50% of the cells, but the surviving cells showed faster re-growth. In conclusion, lovastatin appears as a useful inhibitor of cytokinin biosynthesis in short-term studies, but its use in long-term experiments may create complex effects and therefore requires substantial caution.  相似文献   

2.
Alfalfa leaf protoplast cultures were used to study the role ofexogenously supplied auxin and cytokinin on the level and activity ofCdc2-related protein kinases and progression through the first celldivision cycle after re-activation of cell division. Among the threealfalfa Cdc2-related kinases studied, the Cdc2MsA/B kinase (PSTAIRE)showed only significant activity during the first four days ofprotoplast culture while the Cdc2MsD (PPTALRE) and Cdc2MsF kinases(PPTTLRE) exhibited only low or undetectable activity, respectively,during this period. Although the Cdc2MsA/B protein could be detectedin leaves and freshly isolated protoplasts in variable amounts, thekinase was never active in these cells. The kinase protein disappearedfrom protoplast-derived cells at the beginning (8h) of culture but itssynthesis re-commenced dependent on the presence of exogenous auxin butnot cytokinin. The cytokinin response of alfalfa protoplast-derivedcells varied significantly in different experiments although cytokininwas always required for completion of the first cell division cycle.Frequently both auxin and cytokinin was required for DNA replication asnot more than 5% of cells could incorporate BrdU into their DNAduring three days and significant Cdc2MsA/B activity could not bedetected in the absence of exogenous cytokinin. In other protoplastpopulations, the Cdc2MsA/B kinase was activated by auxin alone andallowed the protoplast-derived cells to enther the S-phase at a similarrate observed in parallel cultures with both auxin and cytokinin. Evenin these cultures, however, ca. 95% of the protoplast-derivedcells were arrested before mitosis without exogenous cytokinin supplywhich could be correlated with decreasing Cdc2MsA/B activity. Theseobservations suggest, that although cytokinin is required for bothG0-G1/S and G2/M cell cycle transitions, in certain cultures theG1/S requirement is overcome by some unknown factors (e.g.conditions of explants; endogenous cytokinins etc.). Furthermore, ourexperiments indicate, that the roles of cytokinin are related to thepost-translational regulation of the Cdc2MsA/B kinase complex atboth cell cycle transition points in alfalfa leaf protoplast-derivedcells. Finally, as a marker for the transition from the differentiated(G0) stage to the activated (G1) stage, we suggest using the parametersof nuclear morphology (size and ratio ofnucleus/nucleolus).  相似文献   

3.
The significance of cytokinins for the progression of the cell cycle is well known. Cytokinins contribute to the control of the expression of D-cyclins and other cell cycle genes, but knowledge as to how they affect the progression of the cell cycle is still limited. Highly synchronized tobacco BY-2 cells with clearly defined cell cycle stages were employed to determine cytokinin patterns in detail throughout the entire cycle. Concentrations of trans-zeatin, and of some other cytokinins, oscillated during the course of the cell cycle, increasing substantially at all four phase transitions and decreasing again to a minimum value during the course of each subsequent phase. Addition of exogenous cytokinins or inhibition of cytokinin biosynthesis promoted the progression of the cell cycle when the effects of these manipulations intensified the endogenous fluctuations, whereas the progression of the cycle was retarded when the amplitude of the fluctuations was decreased. The results show that the attainment of low concentrations of cytokinins is as important as the transient increases in concentration for a controlled progression from one phase of the cell cycle to the next. Cytokinin oxidase/dehydrogenase activity also showed fluctuations during the course of the cell cycle, the timing of which could at least partly explain oscillations of cytokinin levels. The activities of the enzyme were sufficient to account for the rates of cytokinin disappearance observed subsequent to a phase transition.  相似文献   

4.
The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.  相似文献   

5.
The developmental characteristics of a transgenic tobacco line (BIK62) expressing the ipt cytokinin-biosynthetic gene under the control of a tagged promoter were analysed. In situ hybridization and cytokinin immunocytochemistry revealed that the ipt gene was mainly expressed in the axillary buds after the floral transition. The ipt-expressing axillary buds presented morphological alterations such as short and narrow scale-leaflets, and swollen internodes filled with starch grains, giving rise to short and tuberized lateral branches. In addition, the modification of the endogenous cytokinin balance in the axillary meristems resulted in a fast rate of leaf initiation and cytokinins accumulated mostly in the lateral zones of the reactivated axillary meristems, suggesting a role in leaf organogenesis. Cell cycle analysis revealed that the reactivated axillary meristems were characterized by predominant S+G2 nuclei. Terminal internodes displayed low levels of hexose and sucrose concomitant with starch accumulation. Extracellular invertases (EC 3.1.26) were also present in higher amounts in the tuberizing internodes compared to the axillary buds of wild-type tobacco. These results underline the role of cytokinins in cell cycle regulation and in the creation of a sink--source effect. They also provide new information about cytokinin involvement in the process of tuberization and their overproduction in axillary buds giving rise to tuberized lateral branches in a naturally non-tuberizing species.  相似文献   

6.
Mosses present several advantages for the analysis of phytohormone physiology. Their enormous regeneration capacity, the possibility of controlling their whole life cycle under in vitro culture conditions, as well as the small number of cell types facilitate studies of hormone homeostasis. This review focuses on the metabolism and biosynthesis of cytokinins, mostly summarising data obtained using the moss Physcomitrella patens (Hedw.) B.S.G. which has served as a model system for cytokinin research for many years. A comparison of metabolic differences with respect to seed plants is presented, pointing out an important role of adenosine kinase for the formation of nucleotides during cytokinin interconversion in Physcomitrella. Results on cytokinin biosynthesis in Physcomitrella are summarised with respect to the OVE mutants, which can be considered unique in the plant kingdom due to their strong overproduction of cytokinins. The OVE phenotype is correlated with both increased activity in early stages of cytokinin biosynthesis as well as increased conversion of cytokinin riboside to the base. Cytokinin interconverting reactions can contribute to the increased levels of cytokinins in OVE mutants. Further studies on hormone physiology in moss will help to complete our understanding of hormonal homeostasis by elucidating the situation in an evolutionary early embryophyte.  相似文献   

7.
As many processes are regulated by both light and plant hormones, evaluation of diurnal variations of their levels may contribute to the elucidation of the complex network of light and hormone signal transduction pathways. Diurnal variation of cytokinin, auxin, and abscisic acid levels was tested in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under a 16/8 h photoperiod. The main peak of physiologically active cytokinins (cytokinin bases and ribosides) was found after 9 h of light, i.e. 1 h after the middle of the light period. This peak coincided with the major auxin peak and was closely followed by a minor peak of abscisic acid. Free abscisic acid started to increase at the light/dark transition and reached its maximum 3 h after dark initiation. The content of total cytokinins (mainly N-glucosides, followed by cis-zeatin derivatives and nucleotides) exhibited the main peak after 9 h of light and the minor peak after the transition to darkness. The main, midday peak of active cytokinins was preceded by a period of minimal metabolic conversion of tritiated trans-zeatin (less than 30%). The major cytokinin-degrading enzyme, cytokinin oxidase/dehydrogenase (EC 1.5.99.12), exhibited maximal activity after the dark/light transition and during the diminishing of the midday cytokinin peak. The former peak might be connected with the elimination of the long-distance cytokinin signal. These cytokinin oxidase/dehydrogenase peaks were accompanied by increased activity of beta-glucosidase (EC 3.2.1.21), which might be involved in the hydrolysis of cytokinin O-glucosides and/or in fine-tuning of active cytokinin levels at their midday peak. The achieved data indicate that cytokinin metabolism is tightly regulated by the circadian clock.  相似文献   

8.
Molecular mechanisms of cytokinin action.   总被引:9,自引:0,他引:9  
Cytokinins have been implicated in many aspects of plant development, including a crucial role in regulating cell proliferation. Recent studies indicate that cytokinins may elevate cell division rates by induction of expression of CycD3, which encodes a D-type cyclin thought to play a role in the G1-->M transition of the cell cycle. Progress has also been made in our understanding of cytokinin perception as homologs of two-component phosphorelay systems have emerged as likely signaling elements.  相似文献   

9.
The mitotic inducer gene from Schizosaccharomyces pombe, Spcdc25, was used as a tool to investigate regulation of G2/M in higher plants using the BY-2 (Nicotiana tabacum) cell line as a model. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size through a shortening of the G2 phase. The cells often formed isodiametric double files both in BY-2 cells and in cell suspensions derived from 35S::Spcdc25 tobacco plants. In Spcdc25-expressing cells, the tobacco cyclin-dependent kinase, NtCDKB1, showed high activity in early S phase, S/G2 and early M phase, whereas in empty vector cells CDKB1 activity was transiently high in early S phase but thereafter remained lower. Spcdc25-expressing cells also bypassed a block on G2/M imposed by the cytokinin biosynthetic inhibitor lovastatin (LVS). Surprisingly, cytokinins were at remarkably low levels in Spcdc25-expressing cells compared with the empty vector, explaining why these cells retained mitotic competence despite the presence of LVS. In conclusion, synchronised Spcdc25-expressing BY-2 cells divided prematurely at a small cell size, and they exhibited premature, but sustained, CDKB1 activity even though endogenous cytokinins were virtually undetectable.  相似文献   

10.
Unique Tissue-Specific Cell Cycle in Physcomitrella   总被引:1,自引:0,他引:1  
Abstract: The moss Physcomitrella patens (Hedw.) B.S.G. is a novel tool in plant functional genomics as it has an inimitable high gene targeting efficiency facilitating the establishment of gene/function relationships.
Here we report, based on flow cytrometric (FCM) data, that the basic nuclear DNA content per cell of Physcomitrella is 0.53 pg, equating to a genome size of 1 C = 511 Mbp. Furthermore, we describe a unique tissue-specific cell cycle change in this plant. Young plants consisting of only one cell type (chloronema) displayed one single peak of fluorescence in FCM analyses. As soon as the second cell type (caulonema) developed from chloronema, a second peak of fluorescence at half the intensity of the previous one became detectable, indicating that caulonema cells were predominantly at the G1/S transition, whereas chloronema cells were mainly accumulating at the G2/M transition. This conclusion was validated by further evidence: i) The addition of ammonium tartrate arrested Physcomitrella in the chloronema state and in G2/M. ii) Two different developmental mutants, known to be arrested in the chloronema/caulonema transition, remained in G2/M, regardless of age and treatment. iii) The addition of auxin or cytokinin induced the formation of caulonema, as well as decreasing the amount of cells in G2/M phase. Additionally, plant growth regulators promoted endopolyploidisation.
Thus, cell cycle and cell differentiation are closely linked in Physcomitrella and effects of plant hormones and environmental factors on both processes can be analysed in a straight forward way. We speculate that this unique tissue-specific cell cycle arrest may be the reason for the uniquely high rate of homologous recombination found in the Physcomitrella nuclear DNA.  相似文献   

11.
Strains of Escherichia coli that express two different cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, were used to study the relative sensitivity of these receptors to various cytokinins. Both receptors were most sensitive to the bases of the isoprenoid-type cytokinins trans-zeatin and isopentenyladenine but differed significantly in the recognition of other cytokinin compounds. In particular, CRE1/AHK4 recognized at 1 microm concentration only trans-zeatin while AHK3 recognized cis-zeatin and dihydrozeatin as well, although with a lower sensitivity. Similarly, CRE1/AHK4 was not activated by cytokinin ribosides and ribotides, but AHK3 was. Comparisons using the ARR5::GUS fusion gene as a cytokinin reporter in Arabidopsis showed similar relative degrees of responses in planta, except that cytokinins with aromatic side chains showed much higher activities than in the bacterial assay. These results indicate that the diverse cytokinin compounds might have specific functions in the numerous cytokinin-regulated processes, which may depend in turn on different receptors and their associated signalling pathways. The importance of precise control of local concentrations of defined cytokinin metabolites to regulate the respective downstream event is corroborated.  相似文献   

12.
Data are presented on the cytokinin status of seeds and seed components, at different stages of development in Phaseolus coccineus L., as determined with the soybean callus growth bioassay: A change in cytokinin types according to developmental stage occurred: from biologically very active less polar types (zeatin=Z) at early stages to more polar types (zeatin glucoside=Z9G and zeatin riboside=Zr), with relatively low biological activity, at intermediate and late stages of seed development: When cytokinins were analyzed separately in embryos (embryo proper) and suspensors at two embryonic stages: heart-shaped (A) and middle cotyledonary embryos (stage B) respectively, it was found that: i) at stage A, the suspensor showed cytokinin activity at the level of Z, 2iPA (2-isopentenyladenosine) and Zr, whereas more polar cytokinins (Z9G, Zr) were present in the embryo; ii) at stage B, when the embryo seems to become autonomous for cytokinin supply, there was a relative abundance of active cytokinins (Z, 2iPA) in the embryo to which Z9G activity in the suspensor corresponded. It is concluded that the suspensor plays an essential role in embryogenesis by acting as a hormone source to the early embryo.Abbreviations GA gibberellic acid - 2iPA 2-isopentenyladenosine - Stage A heart-shaped embryo - siage B middle cotyledonary embryo - Z zeatin - Z9G zeatin glucoside - Zr Zeatin riboside  相似文献   

13.
Ultra-performance liquid chromatography-tandem mass spectrometry was used to establish the cytokinin profile of the bryophyte Physcomitrella patens (Hedw.) B.S.G.; of 40 analyzed cytokinins, 20 were detected. cis-Zeatin-riboside-O-glucoside, N(6)-(Delta(2)-isopentenyl)adenosine-5'-monophosphate (iPRMP), and trans-zeatin-riboside-O-glucoside were the most abundant intracellular cytokinins. In addition, the aromatic cytokinins N(6)-benzyladenosine (BAR), N(6)-benzyladenine, meta-, and ortho-topolin were detected. Unexpectedly, the most abundant extracellular cytokinin was the nucleotide iPRMP, and its identity was confirmed by quadrupole time-of-flight mass spectrometry. The effects of overexpressing a heterologous cytokinin oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.5.99.12) gene (AtCKX2 from Arabidopsis [Arabidopsis thaliana]) on the intracellular and extracellular distribution of cytokinins was assessed. In cultures of CKX-transformed plants, ultra-performance liquid chromatography-tandem mass spectrometry measurements showed that there were pronounced reductions in the extracellular concentrations of N(6)-(Delta(2)-isopentenyl)adenine (iP) and N(6)-(Delta(2)-isopentenyl)adenosine (iPR), but their intracellular cytokinin concentrations were only slightly affected. In vitro and in vivo measured CKX activity was shown to be strongly increased in the transformants. Major phenotypic changes observed in the CKX-overexpressing plants included reduced and retarded budding, absence of sexual reproduction, and abnormal protonema cells. In bud-induction bioassays with wild-type Physcomitrella, the nucleotides iPRMP, trans-zeatin-riboside-5'-monophosphate, BAR monophosphate, and the cis-zeatin forms cZ and cZR had no detectable effects, while the activities displayed by other selected cytokinins were in the following order: iP > tZ > N(6)-benzyladenine > BAR > iPR > tZR > meta-topolin > dihydrozeatin > ortho-topolin. The results on wild type and CKX transgenics suggest that extracellular iP and iPR are the main cytokinins responsible for inducing buds in the bryophyte Physcomitrella. Cytokinin profile is discussed regarding the evolution of cytokinin biosynthetic pathways.  相似文献   

14.
Li CH  Yu N  Jiang SM  Shangguan XX  Wang LJ  Chen XY 《Planta》2008,228(1):125-136
S-adenosyl-L: -homocysteine hydrolase (SAHH) is a key enzyme for maintenance of cellular transmethylation potential. Although a cytokinin-binding activity had been hypothesized for SAHH, the relation between cytokinin and transmethylation reactions has not been elucidated. Here we show that, of the two Arabidopsis thaliana SAHH genes, AtSAHH1 has a much higher expression level than AtSAHH2. A T-DNA insertion mutant of AtSAHH1 (sahh1-1) and the RNA interference (RNAi) plants (dsAtSAHH2) accumulated a higher level of cytokinins, exhibited phenotypic changes similar to those of cytokinin-overproducers, and their global DNA methylation status was reduced. On the other hand, cytokinins positively regulate the transmethylation pathway genes, including AtSAHH1, AtADK1 (for adenosine kinase), and this regulation involves the cytokinin activity. Furthermore, expression of three cytosine DNA methyltransferase genes examined was inducible by cytokinin treatment. Unlike adenine and adenosine which are SAHH inhibitors, the adenine-type cytokinins have no effect on SAHH activity at protein level. Changing of endogenous cytokinin levels by transgene expression resulted in alterations of DNA methylation status in the sahh1-1 background, suggesting that cytokinins promote DNA methylation, at least under transmethylation stringent conditions. These data demonstrate that the phytohormone cytokinin plays a role in promoting transmethylation reactions, including DNA methylation.  相似文献   

15.
Expression profiling of cytokinin action in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

16.
Cytokinin is known to be involved in many processes related to plastid development and function but the exact role of cytokinin in photosynthesis remains elusive. To investigate more profoundly the effects of cytokinin in this process, the photosynthetic activity of transgenic Pssuipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with respectively elevated and reduced endogenous cytokinin content was evaluated. Pigment analysis indicated that elevated endogenous cytokinin content resulted in increased pigment content. Functional analysis of the photosynthetic apparatus by chlorophyll a fluorescence and in vitro electron transport measurements clearly showed that changing the endogenous cytokinin content affects the activity of the photosynthetic apparatus. Surprisingly, both an increase as well as a decrease in cytokinin content results in a better photosynthetic performance. Quenching analysis revealed that the initial responses of the photosynthetic apparatus on a dark-light transition are not affected by changed cytokinin content. However, it has an effect on the further kinetic behavior. Taken together, we suggest that cytokinins can induce structural changes in the different parts of the electron transport chain as also demonstrated by the in vitro electron transport measurements.  相似文献   

17.
The ubiquitin/26S proteasome-dependent proteolysis of response regulators is a critical element of many plant hormone signaling pathways. We have recently shown that cytokinin signaling requires the AXR1 component of the related to ubiquitin (RUB) protein modification pathway to promote the proteasome-dependent degradation of the cytokinin response inhibitor ARR5. Here, we show that ARR5 also accumulates in the 26S proteasome mutant rpn12a-1, and leads to a marked resistance to cytokinins. Collectively, these results suggest that proteasome-dependent proteolysis of feedback inhibitors such as ARR5 is essential for the maintenance of optimal responsivity and plasticity in cytokinin signaling.  相似文献   

18.
To investigate the contribution of farnesyl diphosphate synthase (FPS) to the overall control of the mevalonic acid pathway in plants, we have generated transgenic Arabidopsis thaliana overexpressing the Arabidopsis FPS1S isoform. Despite high levels of FPS activity in transgenic plants (8- to 12-fold as compared to wild-type plants), the content of sterols and the levels of 3-hydroxy-3-methylglutaryl-CoA reductase activity in leaves were similar to those in control plants. Plants overexpressing FPS1S showed a cell death/senescence-like phenotype and grew less vigorously than wild-type plants. The onset and the severity of these phenotypes directly correlated with the levels of FPS activity. In leaves of plants with increased FPS activity, the expression of the senescence activated gene SAG12 was prematurely induced. Transgenic plants grown in the presence of either mevalonic acid (MVA) or the cytokinin 2-isopentenyladenine (2-iP) recovered the wild-type phenotype. Quantification of endogenous cytokinins demonstrated that FPS1S overexpression specifically reduces the levels of endogenous zeatin-type cytokinins in leaves. Altogether these results support the notion that increasing FPS activity without a concomitant increase of MVA production leads to a reduction of IPP and DMAPP available for cytokinin biosynthesis. The reduced cytokinin levels would be, at least in part, responsible for the phenotypic alterations observed in the transgenic plants. The finding that wild-type and transgenic plants accumulated similar increased amounts of sterols when grown in the presence of exogenous MVA suggests that FPS1S is not limiting for sterol biosynthesis.  相似文献   

19.
The gene CYTOKININ INDEPENDENT-1 (CKI-1), previously isolated by enhancer trap screening, has been hypothesised to play a role in cytokinin perception. Alternative hypotheses suggest that it is required for the production of cytokinins or that it has no direct role in cytokinin signalling but simply interferes with the pathway when overexpressed. These hypotheses were investigated by producing transgenic Arabidopsis plants expressing CKI-1 cDNA in antisense orientation. In standard conditions, the phenotype of the plants was similar to wild type. Significantly higher amounts of the free base and riboside forms of cytokinin and lower amounts of membrane-impermeable cytokinins were found in the antisense lines. This supports the hypothesis that CKI-1 is involved in cytokinin perception and demonstrates the existence of a feedback loop altering cytokinin metabolism in response to the level of receptor abundance. An elevation in the content of free bases and ribosides of zeatin and isopentenyladenine, along with a reduction in the content of ribotide forms, suggests that a cytokinin ribotide 5'-ribonucleotidase may be a site at which CKI-1 exerts feedback control. When seed homozygous for the transgene was germinated on medium with reduced total mineral nutrient levels, the cotyledons of seedlings with reduced levels of CKI-1 failed to expand and green, and vegetative growth was inhibited. A similar phenotype was observed on low-phosphate media, suggesting that this failure resulted from an interaction between phosphate and cytokinins.  相似文献   

20.
In Sinapis alba , a long-day plant (LDP) which can be induced by a single long day (LD), it has been suggested that cytokinins may be part of a multicomponent floral stimulus. In order to determine cytokinin fluxes during floral transition, we developed a technique to collect phloem sap reaching the apical part of the shoot, close to the target bud. Exudates collected from roots, leaves, and the apical part of the shoot were analysed by radioimmunoassay for cytokinins. Such analyses confirm previous observations, obtained using the Amaranthus bioassay. indicating thai cytokinin export from the roots and mature leaves is enhanced 2–5 fold during floral transition. The flux of cytokinins directed to the upper part of the shoot through the phloem is also rapidly increased (ca 1.5–2 fold) by the inductive treatment, between 9 and 25 h after start of the LD. We suggested that the shoot apical merislem of 2-month-old Sinapis plants probably has a low cytokinin level. Induced leaves rapidly produce a signal which is transported to the roots where it alters cytokinin production and/or export. In addition, or as a consequence, leaf-cytokinins are exported via the phloem to the apical meristem where they induce a mitotic peak and some other events normally associated with the floral transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号