首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dehydroalanine is present in the histidine ammonia-lyase (histidase) from Pseudomonas putida ATCC 12633 as shown by reaction of purified enzyme with K14CN or NaB3H4 and subsequent identification of [14C]aspartate or [3H]alanine, respectively, following acid hydrolysis of the labeled protein. When labeling with cyanide was conducted under denaturing conditions, 4 mol of [14C]cyanide was incorporated per mol of enzyme (Mr 220 000), equivalent to one dehydroalanine residue being modified per subunit in this protein composed of four essentially identical subunits. In native enzyme, inactivation of catalytic activity by cyanide was complete when 1 mol of [14C]cyanide had reacted per mol of histidase, suggesting that modification of any one of the four dehydroalanine residues in the tetrameric enzyme was sufficient to prevent catalysis at all sites. Loss of activity on treatment with cyanide could be blocked by the addition of the competitive inhibitor cysteine or substrate if Mn2+ was also present. Cross-linking of native enzyme with dimethyl suberimidate produced no species larger than tetramer, thereby eliminating the possibility that an aggregation phenomenon might explain why only one-fourth of the dehydroalanyl residues was modified by cyanide during inactivation. A labeled tryptic peptide was isolated from enzyme inactivated with [14C]cyanide. Its composition was different from that of a tryptic peptide previously isolated from other histidases and shown to contain a highly reactive and catalytically important cysteine residue. Such a finding indicates the dehydroalanine group is distinct from the active site cysteine. Treatment of crude extracts with [14C]cyanide and purification of the inactive enzyme yielded labeled protein that release [14C]aspartate on acid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The localization of the active site of penicillin-binding protein 5 from the dacA mutant of Escherichia coli strain TMRL 1222 has been determined. The protein was purified to homogeneity and labeled with [14C] penicillin G. The labeled protein was digested with trypsin, and the active site tryptic peptide was purified by a combination of gel filtration and high-pressure liquid chromatography. Sequencing of the purified [14C]penicilloyl peptide yielded the sequence Arg-Asp-Pro-Ala-Ser-Leu-Thr-Lys, which corresponds to residues 40-47 of the gene sequence (Broome-Smith, J., Edelman, A., and Spratt, B. G. (1983) in The Target of Penicillin (Hakenbeck, R., Holtje, J.-V., and Labischinski, H., eds) pp. 403-408, Walter de Gruyter, Berlin). The catalytic amino acid residue that forms a covalent bond with penicillin was identified by treating the purified [14C]penicilloyl peptide with a mixture of proteases and then separating the radioactive products using high-pressure liquid chromatography. Analysis of the radioactive peaks by amino acid analysis confirmed that it is the serine residue that reacts with the beta-lactam ring of penicillin.  相似文献   

3.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

4.
Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed.  相似文献   

5.
The location of the covalent binding site of the third component of complement (C3) on the IgG heavy chain was determined by sequence analysis of peptides generated by cyanogen bromide digestion of C3-IgG adducts. Activation of the alternative pathway by incubation of heat-aggregated human IgG1 with fresh normal human plasma formed covalent adducts of C3b-IgG. CNBr peptides of these adducts were transferred to a polyvinylidene difluoride membrane, and amino-terminal sequences were determined. A 40-kDa dipeptide containing the covalent bond was identified by labeling the free thiol group (generated during activation of the internal thioester of C3b) with iodo[1-14C]acetamide and analyzed by amino acid sequencing. The resulting double sequence suggested an adduct with NH2 termini at residue 938 (pro-C3 numbering) of C3 (75 residues NH2-terminal to the thioester) and residue 84 in the variable region of the IgG heavy chain. These results combined with results from hydroxylamine treatment (splits ester linkage between C3b and IgG) imply that this adduct peptide consists of a 22-kDa C3 fragment and an 18-kDa IgG fragment. Therefore, C3 binds covalently within the region extending from the last 20 residues of the variable region through the first 20 residues of CH2.  相似文献   

6.
The third component of human complement, C3 is composed of two disulfide-bridged polypeptide chains of Mr 120,000 (alpha chain) and Mr 70,000 (beta chain). C3 has a thioester bond that serves as a binding site for targets when C3 is activated. Heat treatment of C3 induces autolytic peptide bond cleavage at the thioester site in the alpha chain as well as rupture of the thioester bond. The alpha chain fragments are linked to each other and beta chain via disulfide bonds. This study, however, documented that prolonged heating gave rise to liberation of several fragments including beta and the larger fragment of alpha chain. Using a fluorescent thiol reagent and [14C]iodoacetamide, we analyzed thiol residues present on each fragment, and elucidated that the thiol residue exposed by rupture of the thioester bond shifts in turn to another fragment resulting in the liberation of the fragments. The results were compatible with those on C4, and suggested that the generated thiol residue induces thiol-disulfide interchange reaction. On heating of plasma, fragments of C3 were not released, while the cleavage of the alpha chain occurred more effectively. The heated C3 (56 degrees C, 15 min) became insusceptible to C3b inactivator (I) and factor H, suggesting that additional conformational change is accompanied with cleavage of the thioester bond.  相似文献   

7.
L L Lou  S Clarke 《Biochemistry》1987,26(1):52-59
Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77) [Freitag, C., & Clarke, S. (1981) J. Biol. Chem. 256, 6102-6108]. The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl-3H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl-3H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[3H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [3H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[3H]methyl ester or glutamyl gamma-[3H]methyl ester was detected. The formation of D-aspartic acid beta-[3H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl-3H]methionine.  相似文献   

8.
Two types of linkages between the carbohydrate and the peptide moiety in the glycopeptide from Ascobolus furfuraceus are described. Treatment with mild alkali produced beta-elimination of a small oligosaccharide. Evidence for the O-glycosidic linkage was provided by increase in absorbance at 240 nm, decrease in threonine and serine content after the alkaline treatment and detection of tritiated oligosaccharide following alkaline NaB3H4 reduction. Mannose is the sugar involved in the O-glycosidic linkage. The remaining glycopeptide was branched by galactofuranose units, which were selectivity released by mild acid hydrolysis. The N-glycosidic linkage of the sugar chain was conclusively proved by cleavage with endo-beta-N-acetyl-glucosaminidase. Sequential NaB3H4 reduction and acid hydrolysis gave [3H]glucosaminitol. The structure of the sugar chain was studied by 13C NMR spectroscopy and by methylation analysis.  相似文献   

9.
Carboxypeptidase A was incubated at -60 degrees C with an excess of O-(trans-p-chlorocinnamoyl)-L-phenyllactate, O-(hippuryl)-glycolate or N-(hippuryl)-L-phenylalanine. After rapid denaturation with trichloracetic acid the precipitated protein was reduced with [3H]NaCNBH3. 3H Labeled enzyme was isolated by gel chromatography on Sephadex G-25. After complete acid hydrolysis the specific label within the protein was identified by high voltage paper electrophoresis and paper chromatography as [3H]2-amino-5-hydroxyvaleric acid, the reduction product of a gamma-acylated glutamic acid. These results give strong evidence that a mixed anhydride intermediate is formed, which for the first time was identified during the hydrolysis of classical ester as well as peptide substrates by direct chemical means.  相似文献   

10.
Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis.In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  相似文献   

11.
Biosynthetic labelling experiments with cercariae and schistosomula of the multicellular parasitic trematode Schistosoma mansoni were performed to determine whether [3H]palmitate or [3H]ethanolamine was incorporated into proteins. Parasites incorporated [3H]palmitate into numerous proteins, as judged by SDS/polyacrylamide-gel electrophoresis and fluorography. The radiolabel was resistant to extraction with chloroform, but sensitive to alkaline hydrolysis, indicating the presence of an ester bond. Further investigation of the major 22 kDa [3H]palmitate-labelled species showed that the label could be recovered in a Pronase fragment which bound detergent and had an apparent molecular mass of 1200 Da as determined by gel filtration on Sephadex LH-20. Schistosomula incubated with [3H]ethanolamine for up to 24 h incorporated this precursor into several proteins; labelled Pronase fragments recovered from the three most intensely labelled proteins were hydrophilic and had a molecular mass of approx. 200 Da. Furthermore, reductive methylation of such fragments showed that the [3H]ethanolamine bears a free amino group, indicating the lack of an amide linkage. We also evaluated the effect of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: [3H]palmitate-labelled proteins of schistosomula and surface-iodinated proteins were resistant to hydrolysis with this enzyme. In conclusion, [3H]palmitate and [3H]ethanolamine are incorporated into distinct proteins of cercariae and schistosomula which do not bear glycophospholipid anchors. The [3H]ethanolamine-labelled proteins represent a novel variety of protein modification.  相似文献   

12.
It has been proposed that plant cell-wall polysaccharides are subject in vivo to non-enzymic scission mediated by hydroxyl radicals (-*OH). In the present study, xyloglucan was subjected in vitro to partial, non-enzymic scission by treatment with ascorbate plus H(2)O(2), which together generate -*OH. The partially degraded xyloglucan appeared to contain ester bonds within the backbone, as indicated by an irreversible decrease in viscosity upon alkaline hydrolysis. Aldehyde and/or ketone groups were also introduced into the polysaccharide by -*OH-attack, as indicated by staining with aniline hydrogen-phthalate and by reaction with NaB(3)H(4). The introduction of ester and oxo groups supports the proposed sequence of reactions: (a) -*OH-mediated H-abstraction to produce a carbon-centred carbohydrate radical; (b) reaction of the latter with O(2); and (c) elimination of a hydroperoxyl radical (HO(2)*-). When the partially degraded xyloglucan was reduced with NaB(3)H(4) followed by acid hydrolysis, several 3H-aldoses were detected ([3H]galactose, [3H]xylose, [3H]glucose, [3H]ribose and probably [3H]mannose), in addition to unidentified 3H-products (probably including anhydroaldoses). 3H-Alditols were undetectable, showing that few or no conventional reducing termini were introduced. Digestion of the NaB(3)H(4)-reduced, partially degraded xyloglucan with Driselase released 25 times more [3H]Xyl-alpha-(1-->6)-Glc than Xyl-alpha-(1-->6)-[3H]Glc, suggesting that the xylose side-chains of the xyloglucan had been more heavily attacked by -*OH than the glucose residues of the backbone. The radioactive xyloglucan was readily digested by cellulase, yielding 3H-products in the hepta- to nonasaccharide range. A fingerprinting strategy for identifying -*OH-attacked xyloglucan in plant cell walls is proposed.  相似文献   

13.
A novel radioactive thiol reagent, 1-S-[3H]carboxymethyl-dithiothreitol (DTT-S-C[3H(2)]CO(2)H, [3H]CM-DTT), was designed and synthesized at the micromole level by reaction of dithiothreitol with tritiated iodoacetic acid (I-C[3H(2)].CO(2)H). The reaction progress was followed by reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The usefulness of the synthesized reagent was evaluated in a series of experimental approaches. (i) The synthetic phosphopeptide, NSVS(P)EEGRGDSV, was derivatized by [3H]CM-DTT separated from excess reagent by RP-HPLC. The extent of derivatization was quantitated in terms of the mol of P-Ser/mol of peptide by 3H counting, and the location of the phosphoserine was defined by the N-terminal Edman degradation sequence analysis as being the fourth amino acid residue from the N terminus. (ii) A sample of trypsin-digested alpha-casein was derivatized with [3H]CM-DTT, peptides were separated by RP-HPLC, and aliquots of each fraction were counted for 3H label within the peptide map which rapidly pinpointed the original four phosphoserine-containing peptides. This demonstrated the utility of the synthesized radioactive thiol agent in rapid purification and identification of phosphopeptides from HPLC peptide mapping of proteolytic digests of phosphoproteins. (iii) The [3H]CM-DTT was also used to determine the extent of phosphorylation of phosphoproteins both qualitatively by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography and quantitatively by 3H counting. The synthesized radioactive thiol reagent [3H]CM-DTT proved to be very efficient and sensitive and should be adaptable to a wide range of routinely utilized laboratory approaches in many fields of the biological sciences.  相似文献   

14.
Carboxylation, the completion step in prothrombin biosynthesis   总被引:2,自引:0,他引:2  
It has been found that [14C]CO2 is incorporated into prothrombin in vivo in two hours. The amount of incorporation is increased 3 to 4 fold by the administration of vitamin K1 to the warfarin-treated vitamin K-deficient rat, over incorporation in the “normal” rat. The radioactivity is found in one acidic peptide following trypsin digestion and following pronase and aminopeptidase digestion is found in one acidic amino acid. The [14C] is lost on heating of this amino acid at pH 2, leaving unlabeled glutamic acid. It appears that the vitamin K-dependent step in the “completion” of prothrombin is carboxylation of a glutamyl residue of the preformed protein molecule.  相似文献   

15.
Reaction of a high-temperature solid-phase catalytic isotope exchange in peptides and proteins under the action of the catalytically activated spillover hydrogen was studied. The reaction of human recombinant insulin with deuterium and tritium at 120–140°C resulted in an incorporation of 2–6 isotope hydrogen atoms per one insulin molecule. The distribution of the isotopic label by amino acid residues of the tritium-labeled insulin was determined by the oxidation of the protein S-S-bonds by performic acid, separation of polypeptide chains, their subsequent acidic hydrolysis, amino acid analysis, and liquid scintillation counts of tritium in the amino acids. The isotopic label was shown to be incorporated in all the amino acid residues of the protein, but the higher inclusion was observed for the FVNQHLCGSHLVE peptide fragment (B1–13) of the insulin B-chain, and the His5 and His10 residues of this fragment contained approximately 45% of the whole isotopic label of the protein. Reduction of the S-S-bonds by 2-mercaptoethanol, enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius, and HPLC fractionation of the obtained peptides were also used for the analysis of the distribution of the isotopic label in the peptide fragments of the labeled insulin. Peptide fragments which were formed after the hydrolysis of the Glu-Xaa bond of the B-chain were identified by mass spectrometry. The mass spectrometric analysis of the isotopomeric composition of the deuterium-labeled insulin demonstrated that all the protein molecules participated equally in the reaction of the solid-phase hydrogen isotope exchange. The tritium-labeled insulin preserved the complete physiological activity.  相似文献   

16.
The oxidation of UDP-glucose by the enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) from beef liver has been shown to proceed via the enzyme-bound intermediate, UDP-alpha-D-glyco-hexodialdose. The enzyme does not release this aldehyde, nor can it be trapped by reaction with hydroxylamine, thiosemicarbazide, or cyanide. Tight binding of the intermediate aldehyde can be explained by the recent observation that the essential thiol group of the enzyme forms a thiohemiacetal with the aldehyde during the course of the reaction. However, an enzyme preparation with the essential thiol derivatized with cyanide will still not release the aldehyde, indicating an additional as yet unknown binding mechanism. Derivatization ([14C]formaldehyde, followed by NaBH4 reduction) of 6 of the approximately 168 lysine residues per enzyme molecule (of six catalytic subunits) results in destruction of 47% of the enzyme activity, suggesting the involvement of an essential reactive lysine in the mechanism. Preincubation of the enzyme with UDP-glucose decreases both the loss of activity and incorporation of the label, indicating that this lysine is in the vicinity of the active site. Acid hydrolysis of the labeled preparation, followed by paper chromatography, shows that the label has a mobility, in the system used, that is identical with lysine. Elution of this spot followed by chromatography on Aminex A-5 resin showed that it contained the expected mixture of epsilon-N-methyl lysines. When enzyme that has its essential thiol derivatized with cyanide is incubated with UDP-[14C]glucose and NAD+, and then reduced with NaB3H4, a stable enzyme complex is formed which contains both labels. Acid hydrolysis of this preparation, followed by either two-dimensional paper chromatography or separation in an amino acid analyzer, results in both labels appearing in the position of lysine. It is evident that the enzyme oxidizes the UDP-[14C]glucose to the corresponding aldehyde which occurs as the Schiff's base with an essential lysine. This is then reduced by the NaB3H4 to form a secondary amine which is stable toward hydrolysis and migrates with lysine in separation procedures. As would be predicted, the enzyme can be similarly labeled by treatment with UDP-alpha-D-gluco-hexodisidose alone, followed by NaB3H4 reduction. The same hydrolysis product results from this procedure, and it behaves identically with the product formed by treating alpha-N-acetyl lysine with UDP-alpha-D-gluco-hexodialdose, reducing with NaBH4, and then hydrolyzing. This substance appears to be N5-((5-formyl-2-furanyl)methyl)lysine. When chromatographed on Aminex A-5, both the model compound and enzyme hydrolysate gave peaks corresponding to free lysine and the proposed derivative. Evidence is presented that the oxidation of UDP-glucose to the aldehyde is a concerted reaction involving the formation of the Schiff's base, rather than the formation of the aldehyde with the subsequent formation of the Schiff's base...  相似文献   

17.
Covalently bound C3b is released from cell surfaces (EAC1423 and zymosan-C3b) on incubation under physiologic conditions. The release of C3b from cell surfaces occurs by the cleavage of the covalent bond. Sodium dodecyl sulfate (SDS) abolishes the release, thereby indicating the requirement of the native structure of C3b in this process. The phenomenon of release of C3b from cell surfaces has also been observed in the fluid-phase system by using C3b-[3H]glycerol. The kinetics of the release of [3H]glycerol from C3b-[3H]glycerol were studied at 37 degrees C in 0.15 M phosphate buffer, pH 7.4. The first-order rate constant was found to be 0.028 +/- 0.003 hr-1. The release does not take place in either 8 M urea or 6 M guanidine hydrochloride, at pH 7.4. Under alkaline conditions, the rate of release is unaffected in the presence of SDS, indicating that the release in this pH range is not dependent on the native structure of the protein. From the Arrhenius plot in the temperature range 18 to 37 degrees C, an apparent activation energy for the hydrolysis reaction of 21.2 kcal/mol was calculated. The release phenomenon is exclusive for ester-linked complexes, as inferred by the absence of release of [3H]threonine from C3b-[3H]threonine, wherein the linkage is of the amide type. The presence or absence of the C3a portion of the molecule has no effect on the rate of release. The modification of the -SH group of C3i-/C3b-[3H]glycerol alters the rate of hydrolysis of the ester bond between C3i/C3b and [3H]glycerol. Protease inhibitors (PMSF, benzamidine HCl, and DFP) do not alter the rate of release, indicating that the hydrolysis reaction is not due to trace amounts of contaminating proteases. Thus, it appears that some chemical group(s) of C3i/C3b is (are) involved in the intramolecular hydrolysis of the ester bond between C3i/C3b and small molecules. This phenomenon may play an important role in the release of C3b from receptive surfaces once the biologic functions that require covalently bound C3b have been mediated.  相似文献   

18.
1. Penicillin N was synthesized by coupling alpha-amino-alpha-p-nitrobenzyl-N-p-nitro-benzyloxycarbonyl-D-adipate with 6-aminopenicillanic acid benzyl ester, followed by removal of the protecting groups through hydrogenolysis. 2. alpha-Amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate was prepared by treating alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-glutamic acid with [14C]diazomethane followed by rearrangement with silver trifluoromethanesulphonate. 3. Coupling of alpha-amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate with 6-aminopenicillanic acid benzyl ester gave triprotected [10-14C]penicillin N. 4. 3H was introduced at C-6 of the Schiff's base derivative (10) by oxidation followed by reduction with NaB3H4. 5. The so-derived (6 alpha-3H)-labelled Schiff's base was hydrolysed to give 6-amino [6 alpha-3H]penicillanic acid benzyl ester p-toluenesulphonic acid salt, which after coupling as the free amine with alpha-amino-alpha-p-nitrobenzyl-N-pnitrobenzyloxycarbonyl-D-adipate and then hydrogenolysis, yielded [6alpha-3H]penicillin N. 6. Triprotected [10-14C]penicillin N and triprotected [6alpha-3H]penicillin N in admixture were hydrogenolysed to give [10-14C,6alpha-3H]penicillin N.  相似文献   

19.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号