首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

2.
This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO2 fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 gbio l−1 day−1 and 0.2 geps l−1 day−1, and the CO2 fixation rate measured was 1.0 gCO2 l−1 day−1. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 μE m−2 s−1, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s−1, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO2 into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO2 l−1 day−1 outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain.  相似文献   

3.
Induction of high-frequency shoot regeneration using nodal segments containing axillary buds from a 1-yr-old mother plants of Cannabis sativa was achieved on Murashige and Skoog (MS) medium containing 0.05–5.0 μM thidiazuron. The quality and quantity of regenerants were better with thidiazuron (0.5 μM thidiazuron) than with benzyladenine or kinetin. Adding 7.0 μM of gibberellic acid into a medium containing 0.5 μM thidiazuron slightly increased shoot growth. Elongated shoots when transferred to half-strength MS medium supplemented with 500 mg l−1 activated charcoal and 2.5 μM indole-3-butyric acid resulted in 95% rooting. The rooted plants were successfully acclimatized in soil. Following acclimatization, growth performance of 4-mo-old in vitro propagated plants was compared with ex vitro vegetatively grown plants of the same age. The photosynthesis and transpiration characteristics were studied under different light levels (0, 500, 1,000, 1,500, or 2,000 μmol m−2 s−1). An increase in photosynthesis was observed with increase in the light intensity up to 1,500 μmol m−2 s−1 and then decreased subsequently at higher light levels in both types of plants. However, the increase was more pronounced at lower light intensities below 500 μmol m−2 s−1. Stomatal conductance and transpiration increased with light intensity up to highest level (2000 μmol m−2 s−1) tested. Intercellular CO2 concentration (C i) and the ratio of intercellular CO2 concentration to ambient CO2 (C i/C a) decreased with the increase in light intensity in both in vitro as well as ex vitro raised plants. The results show that in vitro propagated and hardened plants were functionally comparable to ex vitro plants of same age in terms of gas and water vapor exchange characteristics, within the limits of this study.  相似文献   

4.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

5.
The effects of three periods of incubation (10, 20 and 30 min) at different levels of bleomycin (0, 0.1, 0.2, 0.3, 0.4 and 0.5 μg ml−1), as well as three periods of exposure (12, 24 and 48 h) to different levels of the anti-auxin p-chlorophenoxyisobutyric acid (PCIB), including 1, 2, 3, 4 and 5 mg l−1, on microspore embryogenesis of rapeseed cv. ‘Amica’ were investigated. Microspore embryogenesis was significantly enhanced following 20 min treatment with 0.2 μg ml−1 bleomycin compared with untreated cultures. Highest embryo yield (163 embryos Petri dish−1) was observed with 24 h treatment of 4 mg l−1 PCIB. The highest percentage of secondary embryogenesis was observed on B5 medium containing 0.15 mg l−1 of gibberellic acid (GA3) and 0.2 mg l−1 6-benzyladenine (BA) in 4–6 mm microspore-derived embryos (MDEs). Most callus formed on B5 medium containing 0.15 mg l−1 GA3, 0.1 mg l−1 BA and 0.1 mg l−1 indole-3-acetic acid (IAA) when 4–6 mm embryos were used. Regeneration was highest on B5 medium containing 0.05 mg l−1 GA3 or 0.1 mg l−1 BA and 0.2 mg l−1 IAA with 2–4 mm embryos. Microspore embryogenesis and plant regeneration could be improved by both bleomycin and PCIB when the appropriate MDE length and phytohormone level were selected.  相似文献   

6.
Cell suspension cultures of Commiphora wightii, grown in modified MS medium containing 2,4-dichlorophenoxyacetic acid (0.5 mg l−1) and kinetin (0.25 mg l−1), produced ∼5 μg guggulsterone g−1 dry wt. In a 2 l stirred tank bioreactor, the biomass was 5.5 g l−1 and total guggulsterone was 36 μg l−1.  相似文献   

7.
Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l−1) was achieved using soybean oil at 40 g l−1 and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l−1 h−1, and the calculated Yp/s value was 0.85 g g−1. Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.  相似文献   

8.
This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L−1. Fluorescence measurements showed that diluted cultures (1–2 g DW L−1) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5–12.5 g DW L−1, which gave a maximum daylight productivity of up to 55 g dry biomass m−2 day−1. A midday depression of maximum PSII photochemical yield (F v/F m) of 20–30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F v/F m indicated low-light acclimated or photoinhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s−1) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.  相似文献   

9.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

10.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

11.
The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm2 cm−2 d−1, 0.709 mg mg−1 d−1, respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (P N), stomatal conductance (g s), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 μmol (CO2) m−2 s−1, 0.090 mol (H2O) m−2 s−1, and 1.03±0.08 mg g−1, respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and P N. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 μm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June — end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm−2) at full leaf expansion was indicative of compact leaves (2028±100 cells mm−2). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex.  相似文献   

12.
The objective of the present work was selection of cultivar and suitable medium for regenerating shoots from leaf segments of non-heading Chinese cabbage. We evaluated six types of supplemented media with 2.0, 5.0 and 10.0 mg l−1 6-BA; 1.0 and 2.0 mg l−1 TDZ; 0.1, 0.3, 0.5, 0.8 and 1.0 mg l−1NAA; 3.0, 5.0 and 7.5 mg l−1AgNO3; 0.01 mg l−1 2–4, D and 4.0 mg l−1 KT for shoot regeneration and six cultivars “Sanchidaye”, “Liuchuandasuomian”, “Qingyou 4”, “Liangbaiye”, “AiKang 5” and “Hanxiao F3”, furthermore for root formation three types of supplemented media with 0.2, 0.3, 0.5 mg l−1 NAA, and for survival rate two types of base media: turf + vermiculite + manure (1:2:0.2) and soil + vermiculite (1:2). Culturing leaf segments on MS medium supplemented with 2 mg l−1 TDZ; 0.5 mg l−1 NAA and 7.5 mg l−1 AgNO3 gave the highest number of shoots per leaf segment (66) while roots were best formed on the medium supplemented with 0.2 mg l−1 NAA. Survival rate was highest (61.6%) in the turf: vermiculite: manure (1:2:0.2) medium. The highest percentage of responding leaf segments, number of shoots per leaf segment, rooting percentage and survival rate were observed in “Liuchuandasuomian”. The plantlets were transferred to the soil and grown into mature plants in pots. These results could be used for preliminary selections of cultivars to transfer disease resistance (Bt) gene through agrobacterium in non-heading Chinese cabbage.  相似文献   

13.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

14.
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO2) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg2+, NH4 + and PO4 3− decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na+, Ca2+, and K+ or increasing Ca2+, Mg2+, K+, NH4 + and PO4 3− concentrations had no effect on ethanol production. However, increased Na+ concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l−1) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH4 + and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH4 + and CyS to CSL (20 g l−1, wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l−1, the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l−1) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH4 +). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.  相似文献   

15.
Withania somnifera is an important medicinal plant that contains withanolides and withaferins, both bioactive compounds. We have tested the effects of macroelements and nitrogen source in W. somnifera cell suspension cultures with the aim of optimizing the production of biomass and withanolide A. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0.0, 0.5, 1.0, 1.5 and 2.0× strength and of the nitrogen source [NH4 +/NO3 (mM/mM) ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20, and 14.38/37.60 (mM)] in Murashige and Skoog medium were tested for biomass and withanolide A production. The highest accumulation of biomass [147.81 g l−1 fresh weight (FW) and 14.02 g l−1 (dry weight (DW)] was recorded in the medium containing a 0.5× concentration of NH4NO3, and the highest production of withanolide A content was recorded in the medium with 2.0× KNO3 (4.36 mg g−1 DW). The NH4 +/NO3 ratio also influenced cell growth and withanolide A production, with both parameters being larger when the NO3 concentration was higher than that of NH4 +. Maximum biomass growth (110.45 g l−1 FW and 9.29 g l−1 DW) was achieved at an NH4 +/NO3 ratio of 7.19/18.80, while withanolide A production was greatest (3.96 mg g−1 DW) when the NH4 +/NO3 ratio was 14.38/37.60 mM.  相似文献   

16.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

17.
Microalgal lipids are the oils of future for sustainable biodiesel production. However, relatively high production costs due to low lipid productivity have been one of the major obstacles impeding their commercial production. We studied the effects of nitrogen sources and their concentrations on cell growth and lipid accumulation of Neochloris oleoabundans, one of the most promising oil-rich microalgal species. While the highest lipid cell content of 0.40 g/g was obtained at the lowest sodium nitrate concentration (3 mM), a remarkable lipid productivity of 0.133 g l−1 day−1 was achieved at 5 mM with a lipid cell content of 0.34 g/g and a biomass productivity of 0.40 g l−1 day−1. The highest biomass productivity was obtained at 10 mM sodium nitrate, with a biomass concentration of 3.2 g/l and a biomass productivity of 0.63 g l−1 day−1. It was observed that cell growth continued after the exhaustion of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen pools such as chlorophyll molecules. The relationship among nitrate depletion, cell growth, lipid cell content, and cell chlorophyll content are discussed.  相似文献   

18.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

19.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

20.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号