首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antarctic terrestrial ecosystems currently include very few non-native species, due to the continent’s extreme isolation from other landmasses. However, the indigenous biota is vulnerable to human-mediated introductions of non-native species. In December 2005, four construction vehicles were imported by contractors to the British Antarctic Survey’s (BAS) Rothera Research Station (Antarctic Peninsula) from the Falkland Islands and South Georgia (South Atlantic) on board RRS James Clark Ross. The vehicles were contaminated with >132 kg of non-Antarctic soil that contained viable non-native angiosperms, bryophytes, micro-invertebrates, nematodes, fungi, bacteria, and c. 40,000 seeds and numerous moss propagules. The incident was a significant contravention of BAS operating procedures, the UK Antarctic Act (1994) and the Protocol on Environmental Protection to the Antarctic Treaty (1998), which all prohibit the introduction of non-native species to Antarctica without an appropriate permit. The introduction of this diverse range of species poses a significant threat to local biodiversity should any of the species become established, particularly as the biota of sub-Antarctic South Georgia is likely to include many species with appropriate pre-adaptations facilitating the colonisation of more extreme Antarctic environments. Once the incident was discovered, the imported soil was removed immediately from Antarctica and destroyed. Vehicle cleaning and transportation guidelines have been revised to enhance the biosecurity of BAS operations, and to minimise the risk of similar incidents occurring.  相似文献   

2.
Dispersal is critical step in plant invasions but there is limited information about human-mediated long distance seed dispersal, including in protected areas. Seed dispersal by hikers was quantified for five invasive species (the native Acaena novae-zelandiae, and the non-native weeds Rumex acetosella Anthoxanthum odoratum, Dactylis glomerata and Festuca rubra) in part of Australia’s Kosciuszko National Park. The proportion of seeds remaining attached to trousers and socks was quantified for replicated short (150 m) and long (5,000 m) distance walks. Functions were fitted for each dataset, and parameters compared among species and between trousers and socks. Dispersal data were combined with attachment rates and the number of people undertaking walks to estimate the total number of weed seeds that might be dispersed. The power exponential function gave the best fit for the majority of datasets, indicating that detachment probability decreased with distance. Seeds of all five species were more tightly attached to socks than trousers, with some seeds still present on socks at 5,000 m. Anthoxanthum and Acaena seeds were more tightly attached to clothing than the other species. Theoretically 1.9 million seeds could be dispersed on socks or 2.4 million seeds on trousers through a season but the actual numbers are likely to be much lower because of limited weed seed at the start of the walks. Because of differences in attachment and detachment rates, seeds from Acaena were more likely to be dispersed longer distances. Long distance human-mediated seed dispersal is potentially a major cause of spread of invasive weeds into protected areas that favours some invasive species over others.  相似文献   

3.
Human-mediated dispersal of seeds over long distances   总被引:1,自引:0,他引:1  
Human activities have fundamental impacts on the distribution of species through altered land use, but also directly by dispersal of propagules. Rare long-distance dispersal events have a disproportionate importance for the spread of species including invasions. While it is widely accepted that humans may act as vectors of long-distance dispersal, there are few studies that quantify this process. We studied in detail a mechanism of human-mediated dispersal (HMD). For two plant species we measured, over a wide range of distances, how many seeds are carried by humans on shoes. While over half of the seeds fell off within 5m, seeds were regularly still attached to shoes after 5 km. Semi-mechanistic models were fitted, and these suggested that long-distance dispersal on shoes is facilitated by decreasing seed detachment probability with distance. Mechanistic modelling showed that the primary vector, wind, was less important as an agent of long-distance dispersal, dispersing seeds less than 250 m. Full dispersal kernels were derived by combining the models for primary dispersal by wind and secondary dispersal by humans. These suggest that walking humans can disperse seeds to very long distances, up to at least 10 km, and provide some of the first quantified dispersal kernels for HMD.  相似文献   

4.
Many grassland plant species have limited capacity to disperse their seeds beyond local boundaries by natural means. Meanwhile, various forms of human transportation are observed to provide long-distance dispersal. However, the contribution of human-mediated dispersal to the spatial dynamics of established (meta)populations on the regional scale has only scarcely been addressed. Trifolium micranthum is a very small legume that is rare in western Belgium. It is found (i) inland, as a lawn weed on war cemeteries that are managed by the Commonwealth War Graves Commission, and (ii) in coastal grasslands that are managed for conservation. These stations lie over 30?km apart, though interestingly, a number of satellite war cemeteries are found within the vicinity of the coastal reserves, and these also harbor T. micranthum. We have sampled plants from these populations to study their affinities through genetic analysis (AFLP). Results indicated that the coastal cemetery populations were closely related to the inland cemeteries and not to the coastal reserves. This most likely is the result of exchange of seeds with composted lawn material among regions, whereas mowing machinery and livestock may effectuate frequent dispersal within regions. Assignment tests nonetheless indicated limited genetic admixture to have taken place at the coastal cemeteries. Thus, human management is responsible for the realization of gene flow among these remote gene pools. Human-mediated long-distance dispersal is likely to play a role in the local or regional dynamics of many other native plants, including more common and well-dispersing species.  相似文献   

5.
Seed passage through the gut of vertebrates can be important for seed dispersal, but might influence seed viability. The ability of seeds to germinate after ingestion by seed-eating fish is important for the population dynamics of some plant species, and significant in the evolution of plant–fish interactions. Certain fish in the Okavango Delta, Botswana, are fruit- and seed-eaters and could act as seed dispersers. We sampled 14 fish species in 2013, finding Nymphaea nouchali var. caerulea seeds in the digestive tracts of eight, most commonly in the striped robber Brycinus lateralis. Seeds extracted from the gut of this species had an overall mean germination success of 11.7%. This fish species might well be a legitimate seed disperser, having a positive effect on seed dispersal from parent plants in the Okavango Delta. The current study represents one of the first investigations of the likelihood of seed dispersal by fish on the African continent.  相似文献   

6.
7.
The role of the Orii’s flying-fox (Pteropus dasymallus inopinatus) as a pollinator and a seed disperser on Okinawa-jima Island was investigated by direct observations and radio-tracking from October 2001 until January 2006. We found that Orii’s flying-fox potentially pollinated seven native plant species. Its feeding behavior and plant morphological traits suggested that this species is an important pollinator of Schima wallichii liukiuensis and Mucuna macrocarpa. The flying-fox also dispersed the seeds of 20 native plant species. The seeds of all plants eaten by the flying-fox were usually dropped beneath the parent tree, although large fruits of four plant species were occasionally brought to the feeding roosts in the mouth, with the maximum dispersal distance—for Terminalia catappa—estimated to be 126 m. Small seeds of 11 species (mostly Ficus species) were dispersed around other trees, during the subsequent feeding session, through the digestive tracts, with the mean dispersal distance for ingested seeds estimated at 150 ± 230.3 m (±SD); the maximum dispersal distance was 1833 m. A comparison of the seed dispersal of available fruits according to the size of flying-foxes and other frugivores suggested that the seed dispersal of eight plant species producing large fruits mostly depended on Orii’s flying-fox. On Okinawa-jima Island, the Orii’s flying-fox plays an important role as a pollinator of two native plants and as a long-distance seed disperser of Ficus species, and it functions as a limited agent of seed dispersal for plants producing large fruits on Okinawa-jima Island.  相似文献   

8.
This paper presents a standardized protocol for the non‐lethal capture of fishes, sampling of stomach contents and quantification of seed dispersal efficiency by frugivorous fishes. Neotropical pacu Piaractus mesopotamicus individuals were collected with fruit‐baited hooks. The diets of 110 fish were sampled using a lavage method, which retrieved >90% of stomach contents of both juveniles and adults and allowed individuals to recover within 5 min of treatment. The proportional volume of six food categories was similar for stomachs and whole digestive tracts retrieved by dissection. Fruit pulp was proportionally lower in the stomach. The abundance and species richness of intact seeds increased with fish size independent of whether only stomachs or whole digestive tracts were analysed. The analysis of stomach contents accounted for 62·5% of the total species richness of seeds dispersed by P. mesopotamicus and 96% of common seeds (seed species retrieved from more than one fish). Germination trials revealed that seed viability was similar for seeds collected from the stomach via lavage and seeds that passed through the entire digestive tract. Therefore, stomach contents provide an unbiased representation of the dietary patterns and seed dispersal of frugivorous fishes.  相似文献   

9.
Tropical rain forest conservation requires a good understanding of plant–animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i.e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration.  相似文献   

10.
Seed dispersal by Japanese monkeys (Macaca fuscata yakui) via cheek-pouch was studied in a warm temperate evergreen forest on Yakushima Island. Plant list was compiled based on a study during 1986–1995, of which troops of monkeys have been habituated without artificial feeding. We followed the well-habituated monkeys in 1993 and 1994 to observe the feeding behavior and their treatments of fruits and seeds, and collected seeds dispersed by monkeys to record the distance carried from the mother trees. We checked the difference of germination ratio between seeds dispersed via cheek-pouch and seeds taken from mother trees by sowing experiments. Seeds and acorns of 22 species were observed to be dispersed via cheek-pouch of monkeys. Among them, three species with acorns were never dispersed via feces, and 15 species with drupes were seldom dispersed via feces. Plant species of which seeds are dispersed only via cheek-pouch had larger seeds than those of dispersed both via cheek-pouch and via feces, and typically had only one or two seeds in a fruit. As for one of cheek-pouch dispersal species,Persea thunbergii, the mean distance when seeds were carried from the mother trees via cheek-pouch was 19.7 m, and the maximum distance was as long as 105 m although more than 80% of seeds were dispersed within 30 m from mother trees. And 82% of seeds dispersed via cheek-pouch germinated. The easy separation of seeds from other parts of the fruit seems to facilitate cheek-pouch dispersal more than dispersal via feces. Cheek-pouch dispersal by monkeys has possibly enhanced the natural selection for larger seeds which bring forth larger seedlings with high shade-tolerance. In conclusion, cheek-pouch dispersal by monkeys is quite an important mode for trees in the mature stand in a warm temperate evergreen forest on Yakushima Island.  相似文献   

11.
Animal‐dispersed plants are increasingly reliant on effective seed dispersal provided by small‐bodied frugivores in defaunated habitats. In the Neotropical region, the non‐native wild pig (Sus scrofa) is expanding its distribution and we hypothesized that they can be a surrogate for seed dispersal services lost by defaunation. We performed a thorough analysis of their interaction patterns, interaction frequencies, seed viability, and characteristics of the seed shadows they produce. We found 15,087 intact seeds in 56% of the stomachs and 5,186 intact seeds in 90% of the scats analyzed, 95% of which were smaller than 10 mm in diameter. Wild pigs were the third most effective disperser among 21 extant frugivore species in a feeding trail experiment in terms of quantity of seeds removed. Gut retention time was 70 ± 23 hr, indicating wild pigs can promote long‐distance seed dispersal. Seed survival after seed handling and gut passage by wild pigs was positively related with seed size, but large seeds were spat out and only smaller seeds were defecated intact, for which we observed a positive or neutral effect on germination relative to manually de‐pulped seeds. Finally, deposition of seeds was four times more frequent in unsuitable than suitable sites for seedling recruitment and establishment. Seed dispersal effectiveness by wild pigs is high in terms of the quantity of seeds dispersed but variable in terms of the quality of the service provided. Our study highlights that negative and positive effects delivered by non‐native species should be examined in a case by case scenario. Abstract in Portuguese is available with online material.  相似文献   

12.
  • Although orthopterans are rarely considered to be effective seed dispersal agents, the large flightless crickets known as ‘weta’ have been suggested to function as ecological replacements for small mammals in New Zealand, where such mammals are absent. In addition, a recent study reported that camel crickets mediate seed dispersal of several heterotrophic plants, including Yoania amagiensis in Japan.
  • I investigated the seed dispersal mechanism of Yoania japonica because the fruit morphology is similar to Y. amagiensis. Specifically, I aimed to determine whether Y. japonica fruits are consumed by camel crickets and, if so, whether the seeds defecated by camel crickets remains intact, by checking seed viability with TTC staining, and whether germination rate is different between seeds collected directly from fruits and defecated seeds by comparing in situ seed germinability.
  • The present study provides evidence that camel crickets function as seed dispersal agents of Y. japonica. Camel crickets were important consumers of Y. japonica fruits, and a substantial portion of the consumed seeds remained viable after passing through the digestive tract. In situ seed germination experiments revealed that the seeds defecated by camel crickets actually germinated in the field. In addition, the germination rate of defecated seeds was even higher than that of intact seeds, although the difference was not significant.
  • Taken together with recent reports of insect‐mediated endozoochory, such a seed dispersal system may be common in plants with fleshy indehiscent fruits and small seeds, even in locations where other seed dispersal agents are present.
  相似文献   

13.
Microstegium vimineum (Japanese stiltgrass) is a non-native weed whose rapid invasion threatens native diversity and regeneration in forests. Using data from a 4 year experiment tracking new invasions in different habitats, we developed a spatial model of patch growth, using maximum likelihood techniques to estimate dispersal and population growth parameters. The patches expanded surprisingly slowly: in the final year, the majority of new seedlings were still within 1 m of the original patch. The influence of habitat was not as strong as anticipated, although patches created in roadside and wet meadow habitats tended to expand more rapidly and had greater reproductive ratios. The long-term projections of the patch growth model suggest much slower spread than has typically been observed for M. vimineum. The small scale of natural dispersal suggests that human-mediated dispersal, likely influenced by forest road management, is responsible for the rapid spread of this invasive species.  相似文献   

14.
黄土丘陵沟壑区主要物种植冠种子库动态及其生态策略   总被引:1,自引:0,他引:1  
植冠种子库是植物适应环境并应对外界干扰的种子生态策略之一,研究了黄土丘陵沟壑区12种主要植物植冠种子库动态,结果表明:杠柳不具有植冠种子库,其他11种植物均具有植冠种子库;除了黄刺玫种子在翌年5月达到脱落高峰,其他植物大部分种子在冬季脱落,其中杠柳、达乌里胡枝子、茭蒿、黄柏刺和水栒子的大部分种子脱落集中偏早,铁杆蒿和土庄绣线菊的大部分种子脱落集中偏晚;植冠宿存对大部分植物种子的萌发特性表现为促进作用;但不同植物种子的萌发时滞对植冠宿存响应差异较大;9种植物种子在植冠上宿存至翌年2月底,其种子活力仍能维持达60%以上;该区植物表现出不同的植冠种子库策略,通过不同的方式来减少干扰的威胁,提高成功萌发与更新的几率,它们或具有较大规模的宿存量、或调控种子萌发特性、或提高种子维持活力的百分比。此外,全面了解该区植物形成植冠种子库的机理及对应的生态策略还有待于全面、深入的研究。  相似文献   

15.
Weed invasion success is strongly influenced by availability of seed dispersal vectors, which may include animals. We examined the potential of several small introduced mammals (mice, kiore, ship rats and possums) to disperse germinable seeds in New Zealand. Captive animals were fed fleshy fruit of weeds (Berberis glaucocarpa, Cotoneaster spp., Crataegus monogyna, Ilex aquifolium, Leycesteria formosa, Ligustrum sinense, Lonicera japonica, Passiflora mollissima, Pyracantha angustifolia, Sorbus hupehensis) and native species (Coprosma spp., Prumnopitys ferruginea and Solanum aviculare). We recorded the percentage of fruit consumed, seed ingested and gut passage time. Faeces were collected and the seeds extracted and tested for germination potential in an unheated glasshouse (two weed species) or under controlled conditions (11 species). The smallest rodents (mice and kiore) generally destroyed all seeds eaten. Large numbers of viable seeds of the small‐seeded (<1 mg) species, L. formosa and S. aviculare, passed through ship rats. Possums consumed the seeds of all adventive and native fruits except P. ferruginea. The proportion of seeds recovered intact from possum faeces varied with plant species and ranged from 6 to 83%. The time required for 50% of all seeds to be passed by possums ranged from 2.5 to 5.5 days with an average of 3.7 days, and was generally unrelated to simple fruit parameters such as percentage pulp and moisture content. For seeds where germination also occurred in the uneaten controls, the germination of seed from possums ranged from 3 to 78%. Germination was mostly lower in seeds from possums than in the controls, where differences were significant. Possums have major potential to disperse a wide range of fleshy fruit‐producing native and introduced plant species. Ship rats have the potential to disperse those with very small seeds.  相似文献   

16.
Liu H  Platt SG  Borg CK 《Oecologia》2004,138(4):539-546
Seed dispersal by animals is one of the most important plant-animal mutualisms, but saurochory, the dispersal of seeds by reptiles, has received little attention. We investigated the role of the Florida box turtle (Terrapene carolina bauri) as a seed dispersal agent in pine rockland forests of the lower Florida Keys and examined the effect of turtle digestion on seed germination. We obtained seeds of 11 species with fleshy fruits and 2 species with non-fleshy fruits (a grass and legume) from the feces of 145 box turtles collected on Key Deer National Wildlife Refuge from 1999 to 2000. We planted the seeds of nine species and germination percentage (percentage of seeds that germinated during the experiment) varied from 10% to 80%. Comparative germination experiments were conducted with Thrinax morrissii, Serenoa repens, and Byrsonima lucida. We compared the germination percentage and germination rate (number of days from planting to seedling emergence) of seeds from three treatments (seeds recovered from feces, control seeds with pulp, and control seeds without pulp) and continued these experiments for up to 2 years. Passage through the box turtle digestive tract greatly enhanced the germination percentage and germination rate of S. repens, but decreased the germination percentage of B. lucida and T. morrissii, and decreased germination rate for T. morrissii. Subsequent destructive seed viability tests revealed that many ungerminated T. morrissii seeds remained viable, suggesting long-term seed dormancy may occur, even after passage through the turtle digestive system. In addition, the proportion of ungerminated seeds which remained viable was greater for seeds recovered from turtle feces than from control seeds with pulp. Furthermore, removal of fleshy pulp either manually or by the turtle digestive system may allow T. morrissii to escape insect predation.  相似文献   

17.
Seed dispersal by Red fox (Vulpes vulpes), Stone marten (Martes foina), and Wild boar (Sus scrofa) was analyzed in an extensively degraded mosaic landscape in Sierra Nevada (SE Spain). The main objective was to determine whether seed dispersal by mammals was related to habitat degradation within a mosaic of adjacent degraded patches mixed with native forest and thereby to determine the potential role of mammals as seed dispersers in degraded landscape units. For three consecutive years, mammal feces were collected in the fruit production period, extracting all seeds of woody species found therein and analyzing their viability. Feces were collected in three different plots for each of five different landscape units: shrubland, native forest, and dense, cleared, and fenced reforestation stands. Seeds from 16 woody species (which represent more than a half of the total fleshy‐fruited woody species available) were recorded, although some agrarian species are also introduced in a low percentage of the scats. Seeds showed a high viability rate for all dispersed species, irrespective of the mammal disperser. No differences in species composition appeared in the overall landscape units or in the seed density between degraded habitats. Due to the small patch size, the high viability of dispersed seeds, and the large home range of the large mammals, these three animal species act as efficient seed dispersers for a diverse assemblage of woody plant species regardless of the habitat type within this degradation framework. This fact has important consequences for the biodiversity recuperation in these degraded habitats, principally in pine plantations.  相似文献   

18.
The role of red‐footed tortoises (Geochelone carbonaria) and yellow‐footed tortoises (G. denticulata) as seed dispersal agents was investigated in northwestern Brazil from 5 to 26 January 2002 by analyzing fecal samples for frequency and viability of seed species and estimating daily displacement of tortoises from recaptured and thread‐trailed individuals. Fourteen of 19 fecal samples contained a total of 646 seeds represented by 11 plant species. The most abundant species was Ficus sp. (N= 400) with 100 percent of seeds viable, followed by Aechmea sp. (N = 88) with 93 percent of seeds viable, and Genipa americana (N= 59) with 91 percent of seeds viable. Mean minimum retention time of seeds was 1.6 d and mean daily displacement of tortoises based on recaptured (N= 7) and thread‐trailed tortoises (N= 2) was 57 m. Thus, the diversity and proportion of viable seeds consumed by tortoises, combined with the seed retention times and daily movements, suggest they may be effective dispersal agents. These preliminary findings warrant further investigation into the ecological role of these tortoises in Neotropical ecosystems and their contribution to the maintenance of species diversity and forest structure.  相似文献   

19.
Seed dispersal is a critical stage in the life history of plants. It determines the initial pattern of juvenile distribution, and can influence community dynamics and the evolutionary trajectories of individual species. Vertebrate frugivores are the primary vector of seed dispersal in tropical forests; however, most studies of seed dispersal focus on birds, bats and monkeys. Nevertheless, South America harbors at least 200 species of frugivorous fishes, which move into temporarily flooded habitats during lengthy flood seasons and consume fruits that fall into the water; and yet, we know remarkably little about the quality of seed dispersal they effect. We investigated the seed dispersal activities of two species of large-bodied, commercially important fishes (Colossoma macropomum and Piaractus brachypomus, Characidae) over 3 years in Pacaya-Samiria National Reserve (Peru). We assessed the diet of these fishes during the flood season, conducted germination trials with seeds collected from digestive tracts, and quantified fruit availability. In the laboratory, we fed fruits to captive Colossoma, quantified the proportion of seeds defecated by adult and juvenile fish, and used these seeds in additional germination experiments. Our results indicate that Colossoma and Piaractus disperse large quantities of seeds from up to 35% of the trees and lianas that fruit during the flood season. Additionally, these seeds can germinate after floodwaters recede. Overexploitation has reduced the abundance of our focal fish species, as well as changed the age structure of populations. Moreover, older fish are more effective seed dispersers than smaller, juvenile fish. Overfishing, therefore, likely selects for the poorest seed dispersers, thus disrupting an ancient interaction between seeds and their dispersal agents. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra‐Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra‐Antarctic panmixia and (b) intra‐Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra‐Antarctic dispersal routes. Sixty‐seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time‐calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra‐Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub‐Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long‐range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra‐Antarctic dispersal routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号