首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leptin has been shown to reduce body fat in vivo. Adipocytes express the leptin receptor; therefore, it is realistic to expect a direct effect of leptin on adipocyte growth and metabolism. In vitro studies examining the effect of leptin on adipocyte metabolism require supraphysiological doses of the protein to see a decrease in lipogenesis or stimulation of lipolysis, implying an indirect action of leptin. It also is possible that leptin reduces adipose mass by inhibiting preadipocyte proliferation (increase in cell number) and/or differentiation (lipid filling). Thus we determined direct and indirect effects of leptin on preadipocyte proliferation and differentiation in vitro. We tested the effect of leptin (0-500 ng/ml), serum from leptin-infused rats (0.25% by volume), and adipose tissue-conditioned medium from leptin-infused rats (0-30% by volume) on preadipocyte proliferation and differentiation in a primary culture of cells from male Sprague-Dawley rat adipose tissue. Leptin (50 ng/ml) stimulated proliferation of preadipocytes (P<0.05), but 250 and 500 ng leptin/ml inhibited proliferation of both preadipocyte and stromal vascular cell fractions (P<0.01), as measured by [3H]thymidine incorporation. Serum from leptin-infused rats inhibited proliferation of the adipose and stromal vascular fractions (P=0.01), but adipose tissue-conditioned medium had no effect on proliferation of either cell fraction. None of the treatments changed preadipocyte differentiation as measured by sn-glycerophosphate dehydrogenase activity. These results suggest that leptin could inhibit preadipocyte proliferation by modifying release of a factor from tissue other than adipose tissue.  相似文献   

2.
Complete differentiation of adipocyte precursors   总被引:9,自引:0,他引:9  
Summary Evidence for the complete morphological maturation of precursor cells into adipocytes in vitro is presented. Cells were isolated from the stromal fraction of adipose tissue from adult humans and from rats and were grown in culture. Abdominal skin fibroblasts were used as controls. All cell strains were initially fusiform and replicated. On reaching monolayer confluency, they were transferred to an enriched growth medium in which the human and rat adipocyte precursors differentiated into a homogeneous population of cells, morphologically indistinguishable from mature adipocytes. In contrast, skin fibroblasts from the same person or animal, and grown under identical culture conditions, did not accumulate lipid and retained their fusiform contour. The same results were obtained in the first six subcultures that were studied. Thus, there is firm evidence that fat tissue of adult humans and rats contains adipocyte precursors that differentiate into mature fat cells. The culture system that has been described will facilitate the elucidation of the factors involved in replication and differentiation of adipocyte precursors.This work was supported by The Medical Research Council of Canada Grant MA-5827, The Ontario Heart Foundation, The Atkinson Charitable Foundation, The Banting Research Foundation, The J.P. Bickell Foundation, and the Physicians' Services Incorporated Foundation  相似文献   

3.
Adipose tissue is a source of adult multipotent stem cells that can differentiate along mesenchymal lineage. When mature fat cells obtained from human subcutaneous adipose tissue were maintained with attachment to the ceiling surface of culture flasks filled with medium, two fibroblastic cell populations appeared at the ceiling and the bottom surface. Both populations were positive to CD13, CD90, and CD105, moderately positive to CD9, CD166, and CD54, negative to CD31. CD34, CD66b, CD106, and CD117, exhibited potential of unlimited proliferation, and differentiated along mesenchymal lineage to produce adipocytes, osteoblasts, and chondrocytes. The population that appeared at the ceiling surface showed higher potential of adipogenic differentiation. These observations showed that the cells tightly attached to mature fat cells can generate two fibroblastic cell populations with multiple but distinct potential of differentiation. Since enough number of both populations for clinical transplantation can be easily obtained by maintaining fat cells from a small amount of subcutaneous adipose tissue, this method has an advantage in preparing autologous cells for patients needing repair of damaged tissues by reconstructive therapy.  相似文献   

4.
Adrenomedullin (AM) is a potent vasodilating peptide originally isolated from human pheochromocytoma cells. This report concerns the expression and secretion of AM from adipose tissue. Northern blot analysis demonstrated marked expression of AM mRNA in mouse adipose tissue. Expression levels in adipose tissues were 2.5-3.2 times higher than in the kidney. AM mRNA level in mature adipocytes was 7.3 times higher than in the stroma-vascular fraction of adipose tissue. In mature adipocyte culture, time-dependent increase of AM peptide concentration in the culture medium was detected. AM expression was also detected in human subcutaneous adipose tissue. Adipose AM expression significantly increased in obesity mouse model, high-fat diet fed mice and ob/ob mice. These results suggest that adipose tissue, especially mature adipocytes, is major source of AM in the body, and that adipocyte-derived AM plays a pathophysiological role in obesity.  相似文献   

5.
Summary The possible existence of adipocyte precursors in adult rat adipose tissue was investigated. Cells were isolated from the stromal fraction of adipose tissue and were grown in culture. Skin fibroblasts were used as controls. The stromal fraction cells were initially fusiform and proliferated; in culture, they accumulated lipid inclusions, became rounder and acquired an eccentric nucleus. In contrast, the skin fibroblasts from the same rat and grown under identical culture conditions, did not exhibit any appreciable lipid accumulation. The doubling time for both the stromal fraction cells and skin fibroblasts was 40–60 h. At confluency, the stromal fraction cells contained 5–7 times more glyceride-glycerol than skin fibroblasts.Thus, adipose tissue of adult rats contains cells with the potential to proliferate and acquire morphological characteristics similar to those of adipocytes.This work was supported by The Medical Research Council of Canada Grant MA-5827, The Ontario Heart Foundation, The Atkinson Charitable Foundation, The Banting Research Foundation and The J.P. Bickell Foundation  相似文献   

6.
I mouse strain displays adipocyte hypoplasia responsible for smaller fat pad size compared with C57BL mice. We investigated possible alterations in the proliferation and/or differentiation capacity of preadipocytes from the stroma-vascular fraction of adipose tissue in the I mouse strain. Control C57BL and I mice were studied at 8 weeks of age, and both adipose and stromal cells were isolated from epididymal and inguinal adipose tissue localizations. Results showed that the lower epididymal adipose mass in I mice was accompanied by a decrease in stromal cell number compared with C57BL mice. In inguinal fat pads, total cell number in the stroma-vascular fraction was unmodified; lipoprotein lipase activity significantly increased in stromal cells from I mice compared with control mice. In this depot, further characterization of cells from the stroma-vascular fraction by separation of cells according to density showed an increased number of preadipocytes in the I mouse whole stromal cell population. These preadipocytes seemed unable to undergo terminal maturation, thus leading to a decrease in the number of mature adipocytes. These results indicated that resistance to fat accumulation in I mice is characterized by site-dependent impairment of both the proliferative rate and the differentiation capacity of adipocyte precursors.  相似文献   

7.
We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. This work was supported by grants from the Japan Ministry of Education, Science, Sports, and Culture (no. 19580348) and from MEXT. HAITEKU (2007–2011).  相似文献   

8.
Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes. Out of 960 features detected by 2-D gel electrophoresis, a total of 200 features displayed a 2-fold up- or down-regulation relative to each cell population. The protein identity of 136 features was determined. Immunoblot analyses comparing SVF relative to adipocytes confirmed that carbonic anhydrase II was up-regulated in both adipose depots while catalase was up-regulated in the arm only. Bioinformatic analyses of the data set determined that cytoskeletal, glycogenic, glycolytic, lipid metabolic, and oxidative stress related pathways were highly represented as differentially regulated between the mature adipocytes and stromal vascular fraction cells. These findings extend previous reports in the literature with respect to the adipose tissue proteome and the consequences of adipogenesis. The proteins identified may have value as biomarkers for monitoring the physiology and pathology of cell populations within subcutaneous adipose depots.  相似文献   

9.
脂肪组织易获取、组织相容性好且对供体影响小,可作为获得成体干细胞的重要来源.基质血管组分(SVF)是从脂肪中分离出来的包括脂源性干细胞(ADSC)和基质细胞的异质性细胞群.SVF促进组织的修复和再生已被大量的临床实验所证实,尤其是在美容整形和组织修复中的应用.早期,SVF通过酶消化法获得,随着近年来在临床中扩大应用,为...  相似文献   

10.
Perivascular adipose tissue (PVAT) has the capacity to secrete vasoactive mediators with the potential to regulate vascular function. Given its location adjacent to the vasculature, PVAT dysfunction may be part of the pathophysiology of cardiovascular diseases. To study the mechanisms of PVAT dysfunction, several adipogenic models have been proposed. However, these approaches do not adequately reflect PVAT adipocyte phenotypes variability that depends on their anatomical location. Despite PVAT importance in modulating vascular function, to date, there is not a depot-specific adipogenic model for PVAT adipocytes. We present a model that uses coculturing of PVAT stromal vascular fraction derived preadipocytes with primary adipocytes isolated from the same PVAT. Preadipocytes were isolated from thoracic aorta PVAT and mesenteric resistance artery PVAT (mPVAT). Upon confluency, cells were induced to differentiate for 7 and 14 days using a standard protocol (SP) or standard protocol cocultured with primary adipocytes isolated from the same adipose depots (SPA) for 96, 120, and 144 h. SPA reduced the time for differentiation of stromal vascular fraction derived preadipocytes and increased their capacity to store lipids compared with SP as indicated by lipid accumulation, lipolytic responses, gene marker profile expression, and adiponectin secretion. The coculture system improved adipogenesis efficiency by enhancing lipid accumulation and reducing the time of induction, therefore, is a more efficient method compared to SP alone.  相似文献   

11.
Adipose tissue development is associated with neovascularization, which might be exploited therapeutically. We investigated the neovasculogenesis antigenic profile and kinetics in adipose tissue-derived stromal cells (ADSCs) to understand the potential of ADSCs to generate new vessels. Murine and human visceral adipose tissues were processed with collagenase to obtain ADSCs from the stromal vascular fraction. Freshly isolated murine and human ADSCs featured the expression of early markers of endothelial differentiation [uptake of DiI-labeled acetylated LDL, CD133, CD34, kinase insert domain receptor (KDR)], but not markers for more mature endothelial cells (CD31 and von Willebrand factor). In methylcellulose medium, multilocular cells positive for Oil Red O staining appeared after 6 days. After 10 days, clusters of ADSCs spontaneously formed branched tubelike structures, which were strongly positive for CD34 and CD31, while losing their ability to undergo adipocyte differentiation. In Matrigel, in the presence of endothelial growth factors ADSCs formed branched tubelike structures. By clonal assays in methylcellulose we also determined the frequency of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) colony-forming units from ADSCs, compared with bone marrow-derived stromal cells (BMSCs) used as a positive control. After 4-14 days, BMSCs formed 8 +/- 3 BFU-E and 40 +/- 10 CFU-GM, while ADSCs never produced colonies of myeloid progenitors. The developing adipose tissue has neovasculogenic potential, based on the recruitment of local rather than circulating progenitors. Adipose tissue might therefore be a viable autonomous source of cells for postnatal neovascularization.  相似文献   

12.
The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.  相似文献   

13.
14.
The rapid apparent conversion of brown adipose tissue into white adipose tissue in newborn offspring of large mammals, such as sheep and cattle is not explained at the cellular level. To study the differentiation of lamb brown adipocyte, a genomic fragment corresponding to the uncoupling protein was cloned from an ovine DNA library. Stromal vascular fibroblasts isolated from the perirenal adipose tissue of newborn lambs completely differentiated into brown adipocytes expressing the uncoupling protein gene, in a chemically defined serum-free medium. Dexamethasone was necessary for the expression of the uncoupling protein gene. When stromal vascular fibroblasts were isolated from 3-week-old lambs, the glucocorticoid analog still promoted in vitro differentiation of adipocytes. However those adipocytes were unable to express uncoupling mRNA and could be considered as white adipocytes. The data indicate that dexamethasone is necessary but not sufficient clone for the complete differentiation of brown adipocytes, and that the preadipocytes are committed to differentiation into brown or white adipocytes before culture.  相似文献   

15.
Adipose tissue contains a stroma that can be easily isolated. Thus, human adipose tissue presents an source of multipotent stromal cells. In order to determine the implication of hematopoietic markers in adipocyte biology, we have defined part of the phenotype of the human adipose tissue-derived stromal cells, and compared this to fully differentiated adipocytes. Flow cytometry demonstrates that the protein expression phenotype of both cell types are similar and includes the expression of CD10, CD13, CD34, CD36, CD55, CD59 and CD65. No significant difference between subcutaneous and omental adipose tissue could be demonstrated concerning the expression of these markers. However, the expression of CD34, CD36 and CD65 is cell-dependent. While the expression of CD36 and CD65 doubled between stromal cells and mature adipocytes, the expression of CD34 decreased, despite this protein being present on the mature adipocyte. As CD34 is described as a stem cell marker and it being unlikely to be expressed on differentiated cells, this result was confirmed by immunostaining and western blot. The clear function of this protein on the adipocyte membrane remains to be determined. The characterization of new proteins on mature adipocytes could have broad implications for the comprehension of the biology of this tissue.  相似文献   

16.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   

17.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

18.
Adipocyte differentiation is a complex process regulated among other factors by insulin and the production of reactive oxygen species (ROS). NOX4 is a ROS generating NADPH oxidase enzyme mediating insulin's action in 3T3L1 adipocytes. In the present paper we show that NOX4 is expressed at high levels both in white and brown preadipocytes and that differentiation into adipocytes results in a decrease in their NOX4 mRNA content. These in vitro results were confirmed in vivo by demonstrating that in intact adipose tissue the majority of NOX4 expressing cells are localized within the preadipocyte containing stromal/vascular fraction, rather than in the portion consisting of mature adipocytes. In line with these observations, quantification of NOX4 mRNA in fat derived from different rodent models of insulin resistance indicated that alteration in NOX4 expression reflects changes in the ratio of adipocyte/interstitial fractions. In conclusion, we reveal that decreased NOX4 mRNA content is a hallmark of adipocyte differentiation and that NOX4 expression measured in whole adipose tissue is not an unequivocal indicator of intact or impaired insulin action.  相似文献   

19.
Adipose tissue is expected to provide a source of proliferative cells for regenerative medicine and cell-transplantation therapies using gene transfer manipulation. We have recently identified ceiling culture-derived proliferative adipocytes (ccdPAs) from the mature adipocyte fraction as cells suitable as a therapeutic gene vehicle because of their stable proliferative capacity. In this study, we examined the capability of adipogenic differentiation of the ccdPAs compared with stromal vascular fraction (SVF)-derived progenitor cells (adipose-derived stem cells, ASCs) with regard to their multipotential ability to be converted to another lineage and therefore their potential to be used for regenerative medicine research. After in vitro passaging, the surface antigen profile and the basal levels of adipogenic marker genes of the ccdPAs were not obviously different from those of the ASCs. However, the ccdPAs showed increased lipid-droplet accumulation accompanied with higher adipogenic marker gene expression after stimulation of differentiation compared with the ASCs. The higher adipogenic potential of the ccdPAs than the ASCs from the SVF was maintained for 42 days in culture. Furthermore, the difference in the adipogenic response was enhanced after partial stimulation without indomethacin. These results indicate that the ccdPAs retain a high adipogenic potential even after in vitro passaging, thus suggesting the commitment of ccdPAs to stable mature adipocytes after autotransplantation, indicating that they may have potential for use in regenerative and gene-manipulated medicine.  相似文献   

20.
The monolayer culture of isolated and disaggregated adipocytes from rat omental and perirenal sites, gave rise to a population of fibroblast-like cells, usually devoid of lipid inclusion. Similar fibroblast-like cells have been obtained in cultures of adipose tissue stromal cells and are thought to be undifferentiated adipocyte stem cells. Although the adipocyte-derived fibroblasts were morphologically indistinguishable from culture-derived fibroblasts of other origins, upon autoimplantation into the splenic bed they regained the lipid inclusion and developed again into adipose tissue. The findings suggest that the transformation of adipose cells into fibroblast-like cells is reversible modulation and not a dedifferentiation into the adipose tissue stem cell. This work also substantiates the increasingly recognized heterogeneity of fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号