首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an important pest of citrus because it transmits plant pathogens responsible for a serious disease of citrus known as huanglongbing. Conventional insecticides are frequently used to manage ACP. Insecticidal soaps (hereafter ‘soaps’) are an insect control option labelled for commercial use as well as for use by homeowners and organic growers. Soaps have been shown to be toxic to some insect pests and therefore might be an alternative to conventional pesticides for control of ACP, but the efficacy of soaps against ACP was largely unknown. Our objective was to test whether different concentrations of two insecticidal soaps, M‐Pede and Safer Insecticidal Soap Concentrate, caused mortality of ACP adults, nymphs and eggs. In addition, we tested whether these soaps were toxic to two natural enemies of ACP, adults of the lady beetle Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) and the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Direct sprays of M‐Pede or Safer Insecticidal Soap were acutely toxic to ACP adults (regardless of gender) and nymphs when applied in solutions of 0.8–2% in water. Insecticidal soaps were non‐toxic to eggs at rates of up to 2%. Residues of soap were less toxic to adult ACP than direct sprays, even when applied at concentrations of up to 4%. M‐Pede or Safer soap at high concentrations (for example, 2% v/v in water) may be an effective alternative to conventional pesticides to manage adult and nymphal ACP, although multiple applications may be needed if a target population includes eggs. A 2% concentration of either soap applied as a direct spray was non‐toxic to adult C. sanguinea but acutely toxic to adult T. radiata. Soaps therefore may be compatible with biological control of ACP by adult coccinellids but not the parasitoid T. radiata.  相似文献   

2.
M. Haseeb  H. Amano  H. Nemoto 《BioControl》2000,45(2):165-178
The contact and oral toxicity of fielddoses of selected pesticides against the cocoon andadult stages of a hymenopterous parasitoid Diadegma semiclausum were studied using severalbioassays. Field rates of ten pesticides wereselective to the parasitoid pupae. Fresh residue(s)of cartap, chlorfenapyr, emamectin benzoate andpermethrin were highly toxic, causing 100% mortalityof adult females in every treatment. Residual effectsof these four insecticides on cabbage foliage showedthat only cartap was highly persistent. Cartapresidues caused 100% mortality for over 30 d. In thesame assay three chitin synthesis inhibitors(chlorfluazuron, flufenoxuron and teflubenzuron) andone fungicide/bactericide (copper nonylphenolsulfonate) and two bactericides (kasugamycin andoxolinic acid) were nontoxic to adults. Effects ofcontact toxicity of chitin synthesis inhibitors andfungicides/bactericides on the untreated progeny oftreated parents was also determined: there was nosignificant difference in parasitism rates betweenprogeny of treated and untreated adults. When thefield doses of these chemicals were fed orally,mortality of female parasitoids ranged from 0% to17.23%. However, oral ingestion adversely affectedthe parasitism rate (p < 0.05) in alltreatments except oxolinic acid. Selectivity oftested pesticides against D. semiclausum andintegration of compatible pesticides with thisparasitoid for IPM of cabbage are discussed.  相似文献   

3.
Pesticides were evaluated for their effect on two parasitoid species, Colpoclypeus flouts and Trichogramma platneri, that are potential biological control agents of leafrollers in apple orchards. Organophosphate and carbamate insecticides were highly toxic to both parasitoids in topical applications, but foliar residues of some products were nontoxic after 7 d. At reduced rates, topically applied pyrethroids were low in toxicity to C. florus were highly toxic to T. platneri, and foliar residues were nontoxic after about 7 d. Imidacloprid and abamectin were highly toxic when applied topically to both parasitoids but were not toxic as 1-d-old residues. Insect growth regulators did not cause mortality either as topical applications or residues; however, diflubenzuron caused severe sublethal effects, completely blocking the production of C. florus offspring. Biorational pesticides, such as soap, oil, and B. thuringiensis products, caused no toxicity to C. florus but had a direct impact on T. platneri as topical applications through physical immobilization. The potential to integrate different pesticides with biological control of leafrollers and the need for a step-wise approach to evaluate the impact of pesticides against natural enemies is discussed.  相似文献   

4.
Abstract: The side‐effects of six pesticides used on peaches in Brazil were tested on the hymenopteran egg parasitoid Trichogramma cacoeciae using four laboratory tests: (a) adult parasitoid exposure to fresh pesticide residue on glass plates (worse case); (b) direct spray of host eggs enclosing the parasitoid egg, larvae or pupae (less‐exposed life stages); (c) exposure of adults to pesticide residues on plant leaves at different intervals after application (persistence); (d) Dose–response pesticide exposures of adults on glass plates. Two dose rates were used: (1) The highest recommended field dosage (FD) and (2) the predicted initial environmental concentrations (PIEC). The results showed that the preparations greatly differed in their initial toxicity and persistence. The insecticide Valient® (methoxyphenozide) and the fungicide Venturol® (dodine) were considered harmless to T. cacoeciae adults as they fell into the class 1 category according to the guidelines of the International Organization for Biological Control (IOBC) when parasitoids were directly exposed to chemical residues. The insecticide/acaricide Assist® (mineral oil) was slightly harmful at the rate of PIEC 0.4 (40% of FD) and moderately harmful at FD. Pesticides in the categories harmless and moderately harmful can be considered for use in integrated pest management (IPM). The fungicide/acaricide Kumulus DF® (sulphur) and the insecticides Dipterex® 500 (triclorfon) and Lebaycid® 500 (fenthion) were harmful at both concentrations. In the persistence test, Assist® was short lived and therefore may in special cases (i.e. reduced direct contact) be considered for use in IPM, but Kumulus® DF, Dipterex® 500 and Lebaycid® 500 constantly reduced parasitism between 77 and 100% and were rated as persistent (more than 30 days). The direct spray of parasitized host eggs at intervals after parasitism showed that Assist® and Kumulus® DF were harmless to the parasitoid egg, larvae and pupae within the host eggs. Dipterex® 500 was slightly harmful when sprayed one day after parasitism (parasitoid egg) and moderately harmful to the other two stages (larvae and pupae). Lebaycid® 500 was harmful to the parasitoid egg and larvae and moderately harmful to the pupae. The dose–response test showed that Kumulus® DF and Dipterex® 500 were toxic to T. cacoeciae. Kumulus® DF was harmful from 1 PIEC 0.4 to 0.125 PIEC 0.4 dosages and was slightly harmful with 0.0625 PIEC 0.4 dosage. Dipterex® 500 was harmful to T. cacoeciae in all the dosages tested.  相似文献   

5.
Two parasitoids attacking nymphs of Asian citrus psyllid,Diaphorina citri Kuwayama (Hemiptera:Liviidae),Tamarixia radiata (Waterston)(Hymenoptera:Eulophi- dae)and Diaphoreneyrtus aligarhensis (Shafee,Alam &Agarwal)(Hymenoptera:Encyrtidae)are being released in California,USA in a classical biological control program. To evaluate the effect of multiple parasitoid species on D.citri mortality,we conducted mesocosm experiments under controlled conditions using a complete block design with 6 treatments (D.cirri nymphs exposed to:no parasitoids;D.aligarhensis or T.radiata alone;D.aligarhensis or T.radiata released first (by 48 h);and both species released simultaneously).Parasitism of D.citri nymphs by T.radiata exceeded 60%and was unchanged when D.aligarhensis were present.Parasitism by D.aligarhensis was greatest when T. radiata was absent (-28%)and was reduced in all treatments with T.radiata present (<3%).D.cirri mortality and parasitoid-related mortality olD.citri was consistent across parasitoid treatments.Laboratory results suggest that competition between D.aligarhensis and T.radiata is asymmetric and favors T.radiata.It may be difficult for D.aligarhensis to contribute significantly to D.cirri biological control where T.radiata is present.However, results reported here suggest that competition between T.radiata and D.aligarhensis is not likely to reduce parasitism by T.radiata or reduce parasitoid-induced mortality of D.citri.  相似文献   

6.
The effect of two insect growth regulators and a neonicotinoid insecticide were tested on immature stages and adults of the parasitoid Aphtyis melinus DeBach (Hymenoptera: Aphelinidae), a key natural enemy of California red scale, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), in California. No significant effects of the insect growth regulators on survival or development to the adult stage were found when the parasitoid was treated at any of the egg, larval, or pupal stages. The broad-spectrum neonicotinoid acetamiprid also showed no significant effect on the development of A. melinus to the pupal stage, probably because immature stages of this ectoparasitoid are protected under the cover of its armored scale host. However, 48 h exposure of adults to acetamiprid residues following emergence resulted in high levels of wasp mortality. Aphytis melinus adults treated with either of the two insect growth regulators as larvae survived 48 h exposure to pesticide residues as adults and showed levels of fecundity comparable with control insects. We conclude that the two insect growth regulators are compatible with augmentative releases of A. melinus but that treatments of acetamiprid should be avoided in situations where biological control by this parasitoid is important.  相似文献   

7.
Pesticides targeted at pest species have often been demonstrated to have strong adverse effects on the survival of biological control agents in short-term laboratory bioassays; however, studies examining the influence of pesticides on the actual reproductive success of biological control agents in the field are rare. Because natural enemy reproduction is often directly tied to biological control success, effects of pesticides on reproduction are of central importance. Here we use a new technique to examine the influence of sulfur, a fungicide widely used in grape production, on the reproductive success of Anagrus erythroneurae (Hymenoptera: Mymaridae) and Anagrus daanei (Hymenoptera: Mymaridae), egg parasitoids of the grape leafhopper, Erythroneura elegantula (Homoptera: Cicadellidae). Sulfur has previously been shown to be highly toxic to Anagrus spp. in short-term laboratory and field bioassays, creating the expectation that sulfur should also reduce Anagrus reproductive success in the field. Surprisingly, in two studies, the first comparing the oviposition success of Anagrus collected live in paired sulfur-treated versus untreated vineyards and the second comparing the lifetime reproductive success of Anagrus collected at the end of their lives in unpaired sulfur-treated versus untreated vineyards, we found no effect of sulfur on parasitoid reproductive success. In this system, traditional short-term assays of laboratory toxicity do not appear to predict effects on parasitoid reproductive success, suggesting that demographic approaches to assessing the disruptive effects of pesticides may have an important role in designing IPM programs.  相似文献   

8.
We examined pesticide residue effects on the egg parasitoid Anaphes iole Girault (Hymenoptera: Mymaridae), an inundative biological control agent for Lygus hesperus Knight (Heteroptera: Miridae) in strawberries (Fragaria × ananassa Duchesne). Our objectives were to identify compatible pesticides, determine appropriate parasitoid release timings for minimizing harmful effects, and develop an approach for interpreting pesticide toxicity curves. Six insecticides, 2 acaricides and 6 fungicides were tested, and survivorship of adult A. iole exposed to foliar residues for 48 h, at 4–6 different times after pesticide application, was examined. A logistic function was developed for incorporating control mortality at each test date. Values for LT50 (Lethal Time for 50% mortality) and mortalities on day 1 (initial mortality) and day 13 (estimated maximum time parasitoid releases can be delayed under extreme summer conditions) were estimated. In the study, insecticide residues proved to be the most toxic, followed by those from acaricides while most fungicides were least toxic. Among insecticides, fenpropathrin, bifenthrin and carbaryl caused the greatest mortality (estimated mortality on day 13 >75%). Residues of naled resulted in the least mortality (LT50=3.2 days) followed by methomyl (LT50=8.3 days) and malathion (LT50=13.2 days). Estimated mortality = 12.3% on day 13 for the acaricide propargite and <1% for abamectin. For the fungicides benomyl, captan, myclobutanil and thiram, estimated mortality on day 1 was <1%, and for iprodione it was <6%, indicating compatibility with A. iole releases. For sulfur, LT50=0, but the mortality decay curve was relatively flat (estimated mortality on day 13=13.6%). These results suggest possibilities for integrating A. iole releases with certain pesticide programs by appropriate timing of pesticide applications to minimize negative impacts.  相似文献   

9.
We examined the toxicity of a fungicide, sulfur, to the egg parasitoid Anagrus erythroneurae (Hymenoptera: Mymaridae) Trjapitsyn and Chiapini and the vineyard leafhopper pest Erythroneura elegantula Osborn (Homoptera: Cicadellidae) and tested whether or not the use of sulfur in the field affects biological control of E. elegantula. Using field cage bioassays, we demonstrated that sulfur is toxic to adult A. erythroneurae parasitoids, but not toxic to adult E. elegantula leafhoppers. We nonetheless found in a field experiment that sulfur produced no changes in rates of parasitism or E. elegantula egg density, and generated only a very small increase in the density of E. elegantula nymphs. These results suggest that sulfur, although toxic to A. erythroneurae, is not highly disruptive of E. elegantula biological control in vineyards. Our results suggest that simple bioassays of acute toxicity may not accurately predict the impact of agricultural chemicals on biological control.  相似文献   

10.
One method for controlling the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama, the vector of the putative causal agent of Huanglongbing, uses the parasitoid Tamarixia radiata (Waterston). However, the general intensive use of insecticides has reduced the numbers of this parasitoid. This study evaluated the effect of the residual action of 24 insecticides on T. radiata and also determined the differential toxicity of insecticides to D. citri and T. radiata, using three bioassays. In the first, when adults of the parasitoid were exposed to residues of the 24 insecticides, ten were considered short-life (class 1), six slightly persistent (class 2), five moderately persistent (class 3), and three insecticides were considered persistent (class 4), under the IOBC/WPRS classification system. The second bioassay evaluated the sublethal concentrations of the persistent insecticides (formetanate, dimethoate, spinosad). Increasing the concentrations of the insecticides increased the number that were classified as persistent. In the third bioassay, evaluation of the differential toxicity of eight insecticides to the ACP and the parasitoid showed that chlorpyrifos and bifenthrin were more harmful to T. radiata. Therefore, these two insecticides are not recommended for application at the time of parasitoid release. Cypermethrin, imidacloprid, and dimethoate caused higher mortality of D. citri and are most often recommended in IPM programs. The choice of an insecticide for the control of citrus pests must be made with care, aiming to preserve the natural enemies in the ecosystem, and thereby contribute to the success of biological control.  相似文献   

11.
Lethal and sub lethal effects of fresh and old residues of azadirachtin, spinosad, Bacillus thuringiensis var. kurstaki (Bt var. k), and deltamethrin, were evaluated at their recommended field doses against adult and immature stages of Trichogramma brassicae under in vitro conditions. The experiments were carried out at the Entomology section of Division of Crop Protection, ICAR Research Complex for NEH region, Umiam, Meghalaya, in 2012–2013. The effects of different pesticides were determined by bioassays using the residual film method, the diet contamination method, the pupal dip method and the topical application technique. The four pesticides were found harmful to adult T. brassicae after ingestion, however surface contact bioassays revealed that Bt var. k was the least toxic pesticide. Except Bt var. k, other three pesticides were found harmful also to the immature stages of T. brassicae and significantly affected parasitism potential, adult emergence, longevity of adults, and sex ratio of the progeny. Deltamethrin and azadirachtin were the most harmful, even after 15 days of application. Spinosad was found to be relatively safe to T. brassicae after 15 days of application. As Bt appeared to be the least toxic pesticide for T. brassicae, it could be used for the management of severe infestations of lepidopteran pests in cruciferous ecosystems.If essential, spinosad may be used 15 days after parasitoid release, thus minimizing the chances of parasitoid exposure.  相似文献   

12.
Tamarixia radiata Waterston (Hymenoptera: Eulophidae) is an effective idiobiont ectoparasitoid of the psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vector of the huanglongbing (HLB). We examined the olfactory responses of T. radiata to volatiles emanating from D. citri or plant volatiles using a custom designed T-maze olfactometer and open arena bioassays. We also examined the behavioral response of male and female T. radiata to conspecifics of the opposite sex to determine whether olfactory signals mediate mate location. T. radiata adults exhibited a sexually dimorphic response to volatiles emanating from D. citri and citrus. Female T. radiata responded positively to the odors emanating from D. citri nymphs in both olfactometer and open arena bioassays. However, female wasps showed no response to odors emanating from D. citri adults, D. citri honey dew secretions, intact citrus or orange jasmine leaves. Odors emanating from D. citri damaged citrus were not attractive to T. radiata females but stimulated attraction of wasps to D. citri on damaged plants. T. radiata females were not attracted to D. citri immatures when they were presented as visual cues. Male T. radiata did not show attraction to D. citri nymphs or other putative odors that were attractive to female T. radiata. In olfactometer bioassays, more male T. radiata responded to the odor of female conspecifics than blank controls in the absence of associated citrus host plant volatiles. Odors emanating from female T. radiata were not attractive to male T. radiata. Male or female T. radiata were not attracted to the odors emanating from same sex conspecifics. Both male and female T. radiata adults showed positive phototactic behavior. Collectively, our results provide behavioral evidence that: 1) female T. radiata use volatiles emanating from D. citri nymphs to locate its host and: 2) female T. radiata release a volatile pheromone that attracts male conspecifics.  相似文献   

13.
A series of bioassays were conducted under laboratory conditions to determine the relative toxicities of various pesticides (acetamiprid, cypermethrin, chlorantraniliprole and emamectin benzoate, Bacillus thuringiensis var. kurstaki and Helicoverpa armigera nucleopolyhedrovirus, copper oxychloride, iprodione, mandipropamid, a mixture of propamocarb?+?fluopicolide and mixture of fludioxonil?+?cyprodinil) on Aphidius colemani adults and mummies, as well as sublethal effects on female fecundity. Cypermethrin was highly toxic to pupa of A. colemani within host mummies. Acetamiprid, cypermethrin, emamectin benzoate, a mixture of propamocarb?+?fluopicolide and mixture of fludioxonil?+?cyprodinil were also highly toxic to A. colemani adults (92–100% mortality at 48?h post treatment). Mandipropamid, iprodione and copper oxycloride treatments significantly reduced fecundity of the female parasitoids. In contrast B. thuringiensis var. kurstaki, H. armigera nucleopolyhedrovirus and chlorantraniliprole were harmless (<30% mortality) to the parasitoid species tested according to International Organisation for Biological Control toxicity classification and are likely to be compatible with integrated pest management programmes.  相似文献   

14.
A two-part review is presented relating historical tests of the toxicity of pesticides to Typhlodromus pyri and their relevance to modern pest management in New Zealand pome-fruit orchards. Over the past 30 years, the initial need for T. pyri to be resistant to broad-spectrum pesticides has substantially declined as a growing array of new selective chemicals have come into use. In Part 2, a short-term field test is described for determining the toxicity of single applications of pesticides at recommended rates to European red mite (ERM), Panonychus ulmi, and its predator, an organophosphate (OP)-resistant strain of T. pyri on apples in New Zealand. For each pesticide, changes in mite density were measured from pre-treatment to 2, 7 and up to 25 days post-treatment compared with a water-sprayed control. Density was recorded and analysed for live adult and immature ERM, and live and dead eggs, larvae, nymphs and adults of T. pyri. Fifteen acaricides, 17 fungicides and 17 insecticides were evaluated. Chemicals more toxic to T. pyri than ERM were aminocarb, amitraz, binapacryl, chlordimeform, etrimphos, fenvalerate + azinphos-methyl, mancozeb + dinocap, methidathion, methiocarb, omethoate, oxamyl, pirimiphos-methyl and pyrazophos. Chemicals equally or less toxic to T. pyri than to ERM were acequinocyl, azocyclotin, benzoximate, bromopropylate, chlorpyrifos, clofentezine, cycloprate, cyhexatin, dinocap, mineral oil, propargite, triazophos and vamidothion. The remaining 23 chemicals (primarily fungicides and OP insecticides) had slight or no toxicity to ERM and T.pyri. The short-term field tests provided a useful guide to the long-term effects on ERM and T. pyri populations of almost all the pesticides. However, the potential disruptive effect of pyrazophos was not found in long-term field trials, and conversely, the apparently harmless dithiocarbamate fungicides were later shown to be highly disruptive when repeatedly sprayed, as in commercial practice. Most of the chemicals tested are no longer used in commercial pome-fruit orchards in New Zealand, all of which now practise integrated fruit production or organic fruit production based on selective pest management methods. The tested pesticides of continuing importance are identified and discussed with special emphasis on the current need to retest for dithiocarbamate resistance in T. pyri, some populations of which have been exposed to these compounds for up to 40 years. This and the changes in pesticide use in New Zealand are paralleled by similar developments in most pome-fruit growing areas of the world.  相似文献   

15.
In this study, we measured, under laboratory conditions, the direct and indirect effects of insecticides on mealybug destroyer, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae), and parasitoid Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae). The adult stages of both natural enemies were exposed to sprays of the insecticides buprofezin, pyriproxyfen, flonicamid, acetamiprid, dinotefuran, and clothianidin at label-recommended rates to assess direct mortality after 24, 48, and 72 h, respectively. The effects of the insecticides on L. dactylopii parasitization rate and percentage of parasitoid emergence also were monitored using the label and 4x the recommended label rate. Dinotefuran was extremely detrimental to the adult parasitoid at the label rate with 100% mortality after 24 h. Buprofezin, pyriproxyfen, and flonicamid were not harmful to L. dactylopii when applied at the label rate. At 4x the recommended label rate, dinotefuran, acetamiprid, and clothianidin were all harmful to the parasitoid with 100% mortality 72 h after application. Both buprofezin and flonicamid were not toxic to L. dactylopii with 100% adult survival after 72 h. Pyriproxyfen and flonicamid, at both the label and 4x the recommended label rate, did not negatively affect L. dactylopii parasitization rate or percentage of parasitoid emergence. Acetamiprid, dinotefuran, and clothianidin were toxic to C. montrouzieri adults with 100% mortality after 48 h, whereas buprofezin, pyriproxyfen, and flonicamid demonstrated minimal (10-20% mortality after 48 h) harmful effects to the predator. Based on the results from our study, the indirect effects of the insect growth regulator (IGR) buprofezin were not decisive; however, the IGR pyriproxyfen and the insecticide flonicamid were not directly or indirectly harmful to the predator C. montrouzieri and parastioid L. dactylopii, indicating that these insecticides are compatible with both natural enemies when used together for control of citrus mealybug in greenhouses and conservatories.  相似文献   

16.
Due to increased field occurrence of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) on various crops including soybean, persimmon and apple in recent years in Korea, demand for insecticide applications to control the stink bug has increased. Acute toxicity of eight pesticides on Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae), a major egg parasitoid of R. pedestris, was compared in the laboratory. Fenitrothion, spinosad, cyfluthrin, etofenprox and carbosulfan caused 100% mortality of O. nezarae within 24 hours by topical application or exposure to residue. Fenitrothion was also highly toxic to the parasitoid when ingested orally. In a previous study, release of refrigerated inviable eggs of R. pedestris was found to increase field parasitism; therefore, we evaluated the sublethal effect of fenitrothion when O. nezarae parasitised refrigerated or unrefrigerated host eggs. Although parasitism rates on both kinds of eggs significantly decreased when O. nezarae were provided with host eggs sprayed with fenitrothion, no difference in parasitism rate, adult emergence, sex ratio, development time and longevity of O. nezarae was found between the refrigerated or unrefrigerated host eggs when the insecticide was treated either before or after oviposition. There was no significant sublethal effect when parasitised host eggs were treated with the insecticide. From these results, all the insecticides tested showed high, acute toxicity against O. nezarae with relatively lower sublethal effects. Refrigeration of host eggs did not affect the susceptibility of O. nezarae to insecticides.  相似文献   

17.
1. The response of a phytopathogen vector to pathogen‐induced plant volatiles was investigated, as well as the response of the phytopathogen vector's parasitoid to herbivore‐induced plant volatiles released from plants with and without drought stress. 2. These experiments were performed with Asian citrus psyllid (Diaphorina citri), vector of the plant pathogen Candidatus Liberibacter asiaticus (CLas) and its parasitoid Tamarixia radiata as models. Candidatus Liberibacter asiaticus is the presumed causal pathogen of huanglongbing (HLB), also called citrus greening disease. 3. Diaphorina citri vectors were attracted to headspace volatiles of CLas‐infected citrus plants at 95% of their water‐holding capacity (WHC); such attraction to infected plants was much lower under drought stress. Attraction of the vector to infected and non‐stressed plants was correlated with greater release of methyl salicylate (MeSA) as compared with uninfected and non‐stressed control citrus plants. Drought stress decreased MeSA release from CLas‐infected plants as compared with non‐stressed and infected plants. 4. Similarly, T. radiata was attracted to headspace volatiles released from D. citri‐infested citrus plants at 95% of their WHC. However, wasps did not show preference between headspace volatiles of psyllid‐infested and uninfested plants when they were at 35% WHC, suggesting that herbivore‐induced defences did not activate to recruit this natural enemy under drought stress. 5. Our results demonstrate that herbivore‐ and pathogen‐induced responses are environmentally dependent and do not occur systematically following damage. Drought stress affected both pathogen‐ and herbivore‐induced plant volatile release, resulting in concomitant decreases in behavioural response of both the pathogen's vector and the vector's primary parasitoid.  相似文献   

18.
The suggestion that adding a light oil to avermectin B1 would increase the toxicity of avermectin to spider mites and reduce its effect on predaceous mites was tested in laboratory trials withTetranychus urticae Koch andMetaseiulus occidentalis (Nesbitt) on almond and bean foliage. No differences were found in the toxicity of avermectin + oil vs. avermectin alone at the doses tested forT. urticae; all (0.025, 0.5, 1, and 5 ppm) were highly toxic. Mortality ofM. occidentalis females and larvae was not different on avermectin + oil vs. avermectin alone, but females produced more progeny on the avermectin + oil-treated foliage. At doses of 0.5 to 5 ppm, avermectin was sufficiently toxic to deplete predator populations in the field. Development of predator larvae on avermectin + oil and on avermectin alone was not different. Avermectin + oil on almond foliage aged outdoors was highly toxic after 96 h toT. urticae adults butM. occidentalis larvae survived well on residues by 96 h.M. occidentalis female survival and productivity were not different from the controls by 48 h. Hence a predator mite population might recover through larvae hatching onto residues. Avermectin + oil (3 ppm) residue on bean foliage held outdoors was still highly toxic toT. urticae after 33 days. In contrast,M. occidentalis females and larvae survived well on 48-to 96-hour-old residues. Neither predators nor spider mites placed on treated foliage (3 ppm) were able to reach untreated foliage in tests using bean plant seedlings with one leaf sprayed and one left unsprayed. Furthermore, whenM. occidentalis females were exposed to 3 ppm avermectin for 300 s or longer, mortality was significant and the fecundity of females that had been exposed for as few as 30 s was reduced significantly. Thus, while avermectin is significantly more toxic toT. urticae than toM. occidentalis, its value as a selective acaricide will depend upon learning to use it at rates that will allow the retention of sufficient prey so that surviving predators can persist. Based on these laboratory tests, such selective doses are likely to lie below 1 ppm and can best be determined in field trials.  相似文献   

19.
The relative toxicity of pesticides to Phyllocnistis citrella and its parasitoid Ageniaspis citricola was compared by several bioassay methods. A clip-cage bioassay measured survival of adults exposed to fresh residues at 0.25-times (0.25×), 0.5×, 1×, and 2× the lowest recommended rate of each pesticide, a water control (0×), and 24- and 48-h aged residues of oil at 1.5% (1×) rate. A one-species cylinder bioassay determined the effects of pesticides on immature stages of the citrus leafminer after treating young citrus trees with the same rates of pesticides (except for avermectin, tested at 0×, 0.01×, 0.025×, 0.05×, 0.1×, and 0.25× rates). A sublethal rate of petroleum oil (0.4%) was added as an adjuvant in some treatments. The effect of pesticides on immature stages of A. citricola was determined with a two-species cylinder bioassay after treating young citrus trees with the same rates as above. An index of IPM compatibility was developed based on the efficacy of the pesticide as a control agent of the leafminer (or other pests) and its selectivity to the parasitoid at the lowest recommended field rate (0.25× the field rate for avermectin). Azadirachtin (Neemix) + oil, diflubenzuron (Micromite) + oil, fenoxycarb (Eclipse) + oil, and oil alone (FC 435-66) were classified as IPM-compatible insecticides. Sprays of azadirachtin (Align) + oil, neem oil (Neemgard), and drenched imidacloprid (Admire) were ranked as a semi-compatible insecticides. The fungicide copper hydroxide (Kocide 101) and a fish oil-based foliar fertilizer (Zapata HFE) were considered compatible. Avermectin (Agri-Mek) + oil, ethion (Ethion), and imidacloprid (Provado) applied as a spray were IPM-incompatible insecticides. These products should be tested under field conditions to confirm these ratings.  相似文献   

20.
The toxicity of dimethoate, deltamethrin and pirimicarb residues to Bembidion lampros and Coccinella septempunctata was evaluated by confining groups of insects to winter wheat foliage and soil for 24 h at different times after treatment in the field. Flag leaf residues were found to be more toxic than first leaf residues: soil residues were the least toxic with pirimicarb showing virtually no soil toxicity. In general, dimethoate and deltamethrin showed similar levels of foliar toxicity with flag leaf toxicity on the first day after treatment being in the range 60–80% for B. lampros; deltamethrin was however, less toxic than dimethoate at ground level. Both of these products were more toxic than pirimicarb. The long-term exposure of insects, surviving the 24 h bioassays, to treated soil at different times following application resulted in further mortality and provided estimates of the maximum levels of mortality that populations of predators might suffer migrating into the crop at different times following application. Dimethoate was shown to be particularly harmful at the current recommended field application rate and reduced doses were proposed to limit the severity of the initial effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号