首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Protopectinases (PPases) are a heterogeneous group of enzymes that release water soluble pectin from insoluble protopectin in plant tissues by restricted degradation of the substrate. In all cases reported to date, PPases of bacterial or yeast origin were produced in liquid culture. Here, we describe the growth and PPase production ofAspergillus awamori IFO 4033 in solid state culture. Petri dishes containing 10 g of wheat bran and 15 ml of 0.2 M HCl were inoculated with 2 ml of a suspension with 1 × 105 spores.ml−1 and incubated for 48 h at 30°C. PPase activity on lemon (PPase-l) and apple (PPase-a) protopectins was maximum at 24 h of culture (1490 and 610 U.g−1, respectively) and then decreased. Pectinase activity on lemon and apple pectin and polygalacturonase activity were maximum at 48 h. Hence, the crude enzyme pool obtained at 24 h of process was appropriate for extraction of citrus and apple pectin with a minor subsequent degradation of the solubilized pectin. The ratio of PPase-l to PPase-a changed during culture, so there seemed to be at least two PPases with different substrate specificity.  相似文献   

2.
Different cultural parameters that regulate pectinolytic enzyme production in vitro by Trametes trogii were studied. When grown in a medium containing pectin, T. trogii produced extracellular polymethylgalacturonase, polygalacturonase and pectin lyase but no pectate lyase activity. No significant differences in the maximum enzyme activities measured were observed with the addition of xylan, carboxymethylcellulose or both to the medium containing pectin. The addition of glucose to that medium considerably decreases all the activities studied, and in a medium with glucose as the sole carbon source no galacturonase activity could be measured, and pectin lyase activity was at its minimum. The low synthesis of pectin lyase in cultures containing glucose suggests that this enzyme is constitutive in contrast to the polygalacturonases that were not detected. The increase in pectin concentration stimulated growth and enzyme production. The highest specific activities were attained with the greatest concentration tested (15 g/l). Casamino acids were the best nitrogen source for enzyme production. Maximum growth was measured at pH 3.3; pH values of around 4.5 stimulated enzyme production, but high pectinase activities were also detected in media with more alkaline initial pH values (6.2 for galacturonases and 6.6 for lyases), probably owing to the specific induction of particular isoforms. In the range of 23 to 28°C, good results were obtained in growth as well as in enzyme production. The addition of Tween 80 promoted growth and gave the highest yield of polymethylgalacturonase and pectin lyase (0.37 and 36.2 E.U./ml, respectively). The highest polygalacturonase activity (1.1 E.U/ml) was achieved with polyethylene glycol. Tween 20 and Triton X-100 inhibited growth and pectinase production.  相似文献   

3.
Summary Aspergillus sp strains from decaying lemons were tested for extracellular pectinase production, testing differently pretreated lemon peel as the carbon source instead of pectin. It was found that the production of extracellular polygalacturonase was about the same and that of pectinesterase substantially higher when unwashed fresh lemon peel was used instead of pectin. The culture filtrate obtained showed a clarifying capacity similar to that of a commercial pectinase preparation, but the vitamin C of the juice was less affected by the treatment.  相似文献   

4.
Mango peel is one of the major wastes from fruit processing industries, which poses considerable disposal problems and ultimately leads to environmental pollution. The objective of the current research was to determine the significant parameters on the production of polygalacturonase from mango peel which is a major industrial waste. Solid state culture conditions for polygalacturonase production by Fusarium moniliforme from dried mango peel powder were optimized by Taguchi’s L-18 orthogonal array experimental design methodology. Eight fungal metabolic influencing variables, viz. temperature, mango peel, inoculum, peptone, ammonium nitrate (NH4NO3), magnesium sulphate (MgSO4), zinc sulphate (ZnSO4) and potassium dihydrogen phosphate (KH2PO4) were selected to optimize polygalacturonase production. The optimized parameters composed of temperature (30°C), mango peel (6.5%, g, w/v), inoculum (8%, ml, v/v), peptone (1%, g, w/v), NH4NO3 (0.60%, g, w/v), MgSO4 (0.05%, g, w/v), ZnSO4 (0.06%, g, w/v) and KH2PO4 (0.4%, g, w/v). Based on the influence of interaction of fermentation components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. The temperature, inoculum level, mango peel substrate and KH2PO4 showed maximum production impact at optimized conditions. From the optimized conditions the polygalacturonase activity was maximized to 43.2 U g−1.  相似文献   

5.
The aim of the present study was to produce exo-polygalacturonase from potent soil isolate by submerged fermentation and its application for fruit juice treatment. Pectinase producing strains were selectively isolated from pectin industry waste. A selected isolate C2 was found to produce significant amount of exo-polygalacturonase. The isolate was identified as Paecilomyces variotii on the basis of morphological characteristics and 18S rRNA gene sequence analysis. The exo-polygalacturonase produced by the isolate was purified by ammonium sulphate precipitation, size exclusion chromatography and ion exchange chromatography. The purified enzyme had MW of 39.4 kD based on SDS PAGE. Under partially optimized conditions, purified exo-polygalacturonase showed specific activity of 98.49 U/mg protein at pH 6.0 and 30°C. The enzyme was comparatively stable from 10 to 30°C and the activity decreased with increasing temperature. Purified enzyme brought about considerable reduction in viscosity of fruit juice samples.  相似文献   

6.
Seven different strains were selected for their ability to degrade citrus pectin. Alkaline pectinases were produced by five bacterial soil isolates, whereas two fungal strains produced pectinase in an acidic environment. The bacteria were isolated from soil of a plum orchard in Northern Ireland. These isolates produced significant amounts of pectin lyase (PL) and polygalacturonase (PG) with maximum activities of 30.1 and 29.1 U/ml respectively. Fungal strains Aspergillus sp. and PN-1 produced four different pectinolytic activities; endo-PG, exo-PG, pectin esterase (PE) and PL. The Aspergillus sp. produced higher amounts of pectinase than PN-1. The Aspergillus sp. excreted highly stable pectinases, which may be of importance for industrial applications.  相似文献   

7.
Thermophilic organisms produce thermostable enzymes, which have a number of applications, justifying the interest in the isolation of new thermophilic strains and study of their enzymes. Thirty-four thermophilic and thermotolerant fungal strains were isolated from soil, organic compost, and an industrial waste pile based on their ability to grow at 45°C and in a liquid medium containing pectin as the only carbon source. Among these fungi, 50% were identified at the genus level as Thermomyces, Aspergillus, Monascus, Chaetomium, Neosartoria, Scopulariopsis, and Thermomucor. All isolated strains produced pectinase during solid-state fermentation (SSF). The highest polygalacturonase (PG) activity was obtained in the culture medium of thermophilic strain N31 identified as Thermomucor indicae-seudaticae. Under SSF conditions on media containing a mixture of wheat bran and orange bagasse (1 : 1) at 70% of initial moisture, this fungus produced the maximum of 120 U/ml of exo-PG, while in submerged fermentation (SmF) it produced 13.6 U/ml. The crude PG from SmF was more thermostable than that from SSF and exhibited higher stability in acidic pH.  相似文献   

8.
Production of pectinesterase and polygalacturonase by Aspergillus niger was studied in submerged and solid-state fermentation systems. With pectin as a sole carbon source, pectinesterase and polygalacturonase production were four and six times higher respectively in a solid state system than in a submerged fermentation system and required a shorter time for enzyme production. The addition of glucose increased pectinesterase and polygalacturonase production in the solid state system but in submerged fermentation the production was markedly inhibited. A comparison of enzyme productivities showed that those determined for pectinesterase and polygalacturonase with pectin as a carbon source were three and five times higher by using the solid state rather than the submerged fermentation system. The productivities of the two enzymes were affected by glucose in both fermentation systems. The membranes of cells from the solid state fermentation showed increased levels of C18:1, C16:0 and C18:0 fatty acids. Differences in the regulation of enzyme synthesis by Aspergillus niger depended on the fermentation system, favoring the solid state over the submerged fermentation for pectinase production. Received 12 May 1997/ Accepted in revised form 19 September 1997  相似文献   

9.
Three isolates ofAspergillus niger produced polygalacturonase (PG) and pectin methyl galacturonase (PMG) in the presence of organic and inorganic nitrogen sources. Complete inhibition of PG PMG cellulase (Cx) and proteinase synthesis was found in the presence of cystine in all isolates. Maximum biomass was found in sodium nitrate whereas no isolate could grow in the presence of cystine. A correlation between biomass and enzyme production could be obtained when sodium nitrate and cystine were added to the medium separately. All isolates produced pectic cellulolytic and proteolytic enzymes in the presence of various native carbon sources. Sodium polypectate was found to be the best carbon source for the production of PG and PMG; pectin inhibited completely the production of PG and PMG. Maximum cellulase production was brought about by cotton in all three isolates. Maximum proteinase production was observed with gelatin which served as poor substrate for fungal growth. Sucrose supported maximum fungal growth in comparison with all other native carbon sources. The increased production of pectolytic cellulolytic and proteolytic enzymes in the presence of sodium polypectate reflected a stimulation rather than an induction of synthesis of these enzymes.  相似文献   

10.

Background and Aims

Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples.

Methods

Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined.

Key Results

Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones.

Conclusions

Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains.  相似文献   

11.
Pectin-degrading enzymes (pectinase and pectin lyase) were produced in solid state fermentation by Bacillus subtilis SAV-21 isolated from fruit and vegetable market waste soil of Yamuna Nagar, Haryana, India, and identified by 16S rDNA sequencing. Under optimized conditions, maximum production of pectinase (3315 U/gds) and pectin lyase (10.5 U/gds) was recorded in the presence of a combination of orange peel and coconut fiber (4:1), with a moisture content of 60% at 35 °C and pH 4.0 after 4 days and 8 days of incubation, respectively. Pectinase yield was enhanced upon supplementation with galactose and yeast extract, whereas pectin lyase production was unaffected by adding carbon and nitrogen source to the basal medium. Thus, B. subtilis SAV-21 can be exploited for cost-effective production of pectinase and pectin lyase using agro-residues.  相似文献   

12.
Development of microbial inoculants from rhizobacterial isolates with potential for plant growth promotion and root disease suppression require rigorous screening. Fifty-four (54) fluorescent pseudomonads, out of a large collection of rhizobacteria from broad bean fields of 20 different locations within Imphal valley of Manipur, were initially screened for antifungal activity against Macrophomina phaseolina and Rhizoctonia solani, of diseased roots of broad bean and also three other reference fungal pathogens of plant roots. Fifteen fluorescent pseudomonas isolates produced inhibition zone (8–29 mm) of the fungal growth in dual plate assay and IAA like substances (24.1–66.7 μg/ml) and soluble P (12.7–56.80 μg/ml) in broth culture. Among the isolates, RFP 36 caused a marked increase in seed germination, seedling biomass and control of the root borne pathogens of broad bean. PCR–RAPD analysis of these isolates along with five MTCC reference fluorescent pseudomonas strains indicated that the RFP-36 belonged to a distinct cluster and the PCR of its genomic DNA with antibiotic specific primers Phenazine-1-carboxylic acid and 2, 4-diacetyl phloroglucinol suggested possible occurrence of gene for the potent antibiotics. Overall, the result of the study indicated the potential of the isolate RFP 36 as a microbial inoculant with multiple functions for broad bean.  相似文献   

13.
14.
Summary Byssochlamys fulva was grown in two fermentation media using shake flasks, stirred fermentor and disc fermentor under conditions to give maximum production of pectolytic enzymes. Only polygalacturonase activity was detected in the culture filtrates during all fermentations. In all production conditions studied, no evidence of pectin methylesterase, pectin lyase, cellulase or proteinase activities were found. The maximum polygalacturonase activity (4.5 units/ml) was achieved when the microorganism was grown on medium II in shake flasks at pH 4.0–4.5 and 30°C after 12 days of fermentation.  相似文献   

15.
Three hundred yeasts isolated from tropical fruits were screened in relation to secretion of pectinases. Twenty-one isolates were able to produce polygalacturonase and among them seven isolates could secrete pectin lyase. None of the isolates was able to secrete pectin methylesterase. The pectinolytic yeasts identified belonged to six different genera. Kluyveromyces wickerhamii isolated from the fruit mangaba (Hancornia speciosa) secreted the highest amount of polygalacturonase, followed by K. marxianus and Stephanoascus smithiae. The yeast Debaryomyces hansenii produced the greatest decrease in viscosity while only 3% of the glycosidic linkages were hydrolysed, indicating that the enzyme secreted was an endo-polygalacturonase. The hydrolysis of pectin by polygalacturonase secreted by S. smithiae suggested an exo-splitting mechanism. The other yeast species studied showed low polygalacturonase activity.  相似文献   

16.
Statistically-based experimental designs were used to optimize the production of cyclodextrin glucosyltransferase (CGTase) from a local isolate of Bacillus megaterium using shack culture fermentation. Seven cultural conditions were examined for enzyme production and specific activity using Plackett-Burman factorial design. Fermentation time and K2HPO4 level were the crucial for factors improving enzyme production process. The steepest ascent design was adopted-based on the results recorded with Plackett-Burman design. Maximal enzyme estimates (activity 56.1 U/ml, and specific activity 62.7 U/mg protein) were achieved. A verification experiment was carried out to examine model validation of this optimization.  相似文献   

17.
The aim of this study was to investigate some of the factors affecting pectin lyase (PL) production by an Aspergillus giganteus strain, and to characterize this pectinolytic activity excreted into the medium. The highest activities were obtained with orange waste, citrus pectin and galacturonic acid as carbon sources. The highest activity, using citrus pectin as carbon source, was obtained in 11-day-old standing cultures, but the highest specific activity was obtained in 6.5-day-old shaken cultures, at pH 6.5 and 35°C. Using orange waste as carbon source, the highest activity was observed in 8-day-old standing cultures, at pH 7.0 and 30°C. Optimal assay conditions were pH 8.5–9.0 and 50°C. The PL activity showed thermal stability, with half-lives of 30 and 27 min when incubated at 45 and 50°C, respectively. High stability was observed at room temperature from pH 6.0 to 10.0; more than 85% of enzyme activity was preserved in this pH range. Under optimum conditions, the highest pectin lyase activity in the medium was 470 U/ml, with orange waste as carbon source.  相似文献   

18.
In course of searching for proteolytic microbes from the gut of Gryllotalpa africana, a potent isolate GAP 12.4 was screened and identified as Kitasatospora cheerisanensis having protease activity 46.8?±?1.52?U/ml. Optimum conditions for the protease production (605.3?±?9.7?U/ml) were 7-d cultivation, 5% inoculum, pH 9.5, 55?°C, 150?rpm, and supplementation with 0.8% glucose and 0.6% ammonium sulfate. Surfactants such as SDS, EDTA, Tween 80 and Triton X-100 showed positive effect on enzyme production. Addition of biotin (50?μg/ml) promotes enzyme production maximally (674.15?±?4.13?U/ml). Further enhancement on addition of casein hydrolysate and molasses to the production medium was 709.20?±?7.53?U/ml and 744.26?±?9.71?U/ml, respectively. The isolate was also able to utilize agro-industries waste, green gram husk in solid-state fermentation for enzyme production (1675.02?±?21.58?U/ml). This thermo-alkaliphilic isolate may be a potent candidate for low cost protease production through management of agro-residues. It is the first report of protease production by a member of actinobacteria under the Kitasatospora genus.  相似文献   

19.
Pectin lyases cleave the internal glycosidic bonds of pectin by β-elimination, producing non-saturated galacturonic oligomers. Genetic improvement of pectin lyase-overproducing strains is still necessary to improve industrial processes based on this enzyme. In the present study hybrids were obtained by protoplast fusion between mutant pectinolytic Aspergillus flavipes and Aspergillus niveus CH-Y-1043 strains. Prototrophic segregants showed different isoenzymatic profiles and produced increased levels of pectin lyase in cultures containing lemon peel as a sole carbon source. Hybrid HZ showed an increase of 450% and 1300% in pectin lyase production compared with that of A. niveus CH-Y-1043 and A. flavipes, respectively. Pectin lyase produced by the hybrid HZ was partially purified and used for the hydrolysis of orange peel. Pectin lyase was able to hydrolyze 56% of orange peel biomass. However, addition of 2 RFU and 20 U of endo- and exo-polygalacturonase, respectively, induced the hydrolysis of 92% of orange peel solids. In conclusion HZ is a pectin lyase-overproducing hybrid with potential applications in the pectin industry.  相似文献   

20.
AIMS: To investigate the effect of amino acids, vitamins and surfactants on polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state fermentation (SSF). METHODS AND RESULTS: Bacillus sp. MG-cp-2 was isolated from the outer covering of the seeds of Celastrus paniculatus. Out of the various surfactants, amino acids and vitamins, Tween-60, DL-serine and folic acid maximally enhanced polygalacturonase production by 2.7-fold (240.0 U x ml(-1)), 4.0-fold (360.0 U x ml(-1)) and 3.8-fold (342.0 U x ml(-1)) respectively, under submerged fermentation (SmF). In solid state fermentation (SSF), Tween-80, pyridoxine and DL-ornithine monohydrochloride induced highest enzyme production up to 1.73-fold (6956.5 U x g(-1)), 5.3-fold (21224.4 U x g(-1)) and 5.74-fold (23076.9 U x g(-1)), respectively. CONCLUSION: Amino acids and their analogues, vitamins and surfactants effect significantly polygalacturonase production by Bacillus sp. MG-cp-2 when grown under submerged (SmF) and solid state fermentation (SSF) conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides useful information about regulation of polygalacturonase biosynthesis in Bacillus sp. MG-cp-2, which appears to be an interplay of nutritional and physical factors. Alkaline polygalacturonase from Bacillus sp. MG-cp-2 will be extremely useful in the treatment of alkaline pectic waste waters from vegetable and fruit processing industries and in degumming of bast fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号