首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biopesticide that combines Metarhizium rileyi and nucleopolyhedrovirus (NPV) in an oil dispersion (OD) was developed. Its efficacy against Anticarsia gemmatalis and Chrysodeixis includens was evaluated under laboratory and field conditions. First, each of the two selected fungal strains, combined or not in OD preparations with AgMNPV or ChinNPV, was tested in the laboratory against A. gemmatalis and C. includens, respectively. AgMNPV–fungus combinations had similar effect on overall mortality of A. gemmatalis compared to each pathogen used alone. C. includens was less susceptible to infection by M. rileyi strains, and ChinNPV became the major cause of larval death. The OD formulations with M. rileyi and/or NPV were applied in infested soybean fields. ChinNPV + M. rileyi caused 50.8% of overall mortality six days after spraying in a soybean crop infested by both pests, whereas for treatments with the fungus or the virus alone the percentages were 41.2% and 8.8%, respectively. In another field infested solely by A. gemmatalis, insect mortality was similar for the AgMNPV–fungus combination and the virus used alone. Larval parasitism by wasps and dipterans was not affected following biopesticide spraying. Our results suggest that the performance of a dual-action biopesticide is related to the NPV and fungal strains that are combined and the proportion of host populations simultaneously infesting the crop.  相似文献   

2.
Some baculovirus have been genetically modified for the inactivation of their ecdysteroid glucosyltransferase (egt) gene, and these viruses were shown to kill infected larvae more rapidly when compared to wild-type virus infections. We have previously identified, cloned, and sequenced the egt gene of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV). Here we present data regarding the construction of an egt minus (egt−) AgMNPV and its virulence towards its insect host. We have inserted an hsp70-lacZ (3.7 kb) gene cassette into the egt gene open reading frame (ORF) and purified a recombinant AgMNPV (vAgEGTΔ-lacZ). Bioassays with third-instar A. gemmatalis larvae showed that viral occlusion body (OB) production were consistently lower from infections with vAgEGTΔ-lacZ compared to the wild-type virus. A mean of 20.4×108 OBs/g/larva and 40.7×108 OBs/g/larva was produced from vAgEGTΔ-lacZ and AgMNPV infections, respectively. The mean lethal concentration which killed 50% of insects in a treatment group (LC50) for the 10th day after virus treatment (DAT) was 3.9-fold higher for the wild-type virus compared to vAgEGTΔ-lacZ. The recombinant virus killed A. gemmatalis larvae significantly faster (ca. 1–2.8 days), than the wild-type AgMNPV. Therefore, the vAgEGTΔ-lacZ was more efficacious for the control of A. gemmatalis larvae (in bioassays) compared to wild-type AgMNPV.  相似文献   

3.
The bean shoot borer Epinotia aporema Wals. (Lepidoptera: Tortricidae) and the velvet bean caterpillar Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) are key pests of soybean and other legume crops in South America. They are often found simultaneously in certain regions. A. gemmatalis nucleopolyhedrovirus (AgMNPV) is widely used to control A. gemmatalis. More recently, E. aporema granulovirus (EpapGV) has been characterized and evaluated as a bioinsecticide for E. aporema. In order to increase its potential use and to design optimized strategies for the management of lepidopteran pests, we evaluated the interaction between EpapGV and AgMNPV on third instar A. gemmatalis larvae. Larvae fed with 50 AgMNPV OBs/larva showed an increase in the mortality rates (from 42% to 81%) and a decrease in the median survival time (from 7.7 days to 5.7 days) when these OBs were mixed with 6000 EpapGV OBs/larva. When 300 AgMNPV OBs/larva were used alone or in combination with EpapGV OBs no changes in biological parameters were observed. No mortality was detected in A. gemmatalis larvae treated with EpapGV alone. In larvae fed with the viral mixtures, only AgMNPV DNA was detected by PCR. A. gemmatalis peritrophic membranes (PMs) examined by SDS–PAGE and scanning electron microscopy showed signs of damage. Notably, we found the presence of spheroidal bodies associated with damaged areas in the PMs of larvae fed with EpapGV but not in those that were given AgMNPV alone. These results show that EpapGV increases the viral potency of AgMNPV, and thus the insecticidal efficiency, suggesting that the use of formulations including both viruses might be a valuable tool for pest management.  相似文献   

4.
Fluorescent (optical) brighteners are known for their characteristics of protecting baculoviruses against deactivation by ultraviolet (UV) light and enhancing the activity of these agents as microbial insecticides on hosts and semipermissive hosts. These substances were evaluated in combination with the velvetbean caterpillar, Anticarsia gemmatalis Hübner, multiple-embedded nucleopolyhedrovirus (AgMNPV). The first trial involved 4 fluorescent brighteners (Blankophor BBH, Blankophor HRS, Blankophor RKH, and Tinopal LPW) obtained from the United States. The second trial was conducted with 11 fluorescent brighteners (Tinopal UNPA-GX, Tinopal DMS, Tinopal CBS, Leukophor DUB, Leukophor BSBB, Hostalux KS-N, Hostalux ETBN, BRY 10 D2 100, BRY 10 D2 150, Uvitex BHT, and Uvitex NFW) available in Brazil in combination with the AgMNPV to determine the degree of enhancement of viral activity. These brighteners were also evaluated with regard to AgMNPV protection against deactivation by UV light. Combinations of the virus with selected fluorescent brighteners were tested against both AgMNPV-susceptible and resistant strains of A. gemmatalis. In the first trial, brighteners obtained from the United States promoted increases in AgMNPV activity from 5.2-fold (Blankophor HRS) to 76.6-fold (Blankophor RKH) and reduced the mean time to death by 2.8 to 3.5 days. In the second trial, the most effective brightener (Tinopal UNPA-GX) reduced the LC50 in A. gemmatalis larvae from 7083 occlusion bodies (OBs)/ml (virus alone) to 77.8 OBs/ml (≈90-fold). When 4 selected brighteners were tested in combination with the AgMNPV in resistant insects, the LC50 was reduced by ca. 10,000-fold (Leukophor DUB) to ca. 62,000-fold (Tinopal UNPA-GX), in comparison to the LC50 of 3.7 × 107 OBs/ml observed for the virus alone. Therefore, mortality of highly resistant A. gemmatalis larvae to the AgMNPV increased dramatically when the virus was combined with some fluorescent brighteners. UV protection measured by original activity remaining (OAR) varied from <30% OAR (Uvitex NFW) to >90% OAR (Tinopal UNPA-GX and BRY 10 D2 100). All efficacious brighteners were stilbene disulfonic acid derivatives and, when used alone, none showed negative effects against A. gemmatalis larvae.  相似文献   

5.
The Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) is currently used as an efficient biological pesticide for the control of the velvetbean caterpillar (A. gemmatalis), an important pest of soybean in Brazil. Until now, production of the virus has been achieved mainly by infection of larvae on local soybean farms. Studies for the development of in vitro systems and the optimization of mass production in insects reared on artificial diets is now important to help to meet the actual demand for the bioinsecticide. We therefore, investigated the infectivity of AgMNPV in cell culture, which might contribute to the selection of suitable cell lines that may be used for in vitro production of this virus. The cytopathic effects induced by the virus, the production of viral particles and the synthesis of viral polypeptides were examined and compared in the cell lines from A. gemmatalis (UFL-AG-286), Trichoplusia ni (BTI-Tn-5B1-4 and TN-368), Spodoptera frugiperda (IPLB-SF-21AE and Sf9), Lymantria dispar (IPLB-LD-652Y), and Bombyx mori (BM-5). Whereas, Tn-5B1-4 and AG-286 cells produced large numbers of occlusion bodies, no polyhedra were visualized in either Ld-652Y or BM-5 cells, although extensive cell lysis was observed in BM-5. Analysis of the kinetics of viral protein synthesis by SDS–PAGE after pulse labeling with [35S]methionine, showed similar protein patterns in most of the cell lines tested. Exceptions were the LD-652Y and BM-5 cells, in which viral polypeptides, including polyhedrin, were not synthesized. In parallel, measurement of viral titers (budded virus) by the endpoint dilution method showed that Tn-5B1-4, AG-286, and SF-21AE cells were highly productive. Their TCID50 values, at 48 h p.i., were about 107 IU/ml. In addition to the lower formation of polyhedra, the viral titers determined in Sf9 and TN-368 cells were about 5 to10-fold lower. As expected, the viral titers obtained in LD-652Y and BM-5 cells were similar to basal levels.  相似文献   

6.
The infectivity of stocks of baculoviruses produced in serum‐free media is sensitive to freezing at ultra‐low temperatures. The objective of this work was to elucidate the causes of such sensitivity, using as a model the freezing of stocks of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a baculovirus widely employed as biological insecticide. Titers of supernatants of cell cultures infected with AgMNPV in four different serum‐free media supplemented with lipid emulsions were reduced by 50 to 90% after six months freezing. By using a full factorial experiment, freezing and lipid emulsion, as well as the interaction between them, were identified as the main factors reducing the viral titer. The virucidal effect of the lipid emulsion was reproduced by one of their components, the surfactant Polysorbate 80. Damaged viral envelopes were observed by transmission electron microscopy in most particles frozen in a medium supplemented with lipid emulsion or Polysorbate 80. Additionally, Polysorbate 80 also affected the infectivity of AgMNPV stocks that were incubated at 27°C. The identification of the roles played by the lipid emulsion and Polysorbate 80 is not only a contribution to the understanding of the mechanisms underlying the inactivation of baculovirus stocks produced in serum‐free media during storage at ultra‐low temperature, but is also an input for the rational development of new procedures aimed at improving both the preservation of baculovirus stocks and the composition of culture media for the production of baculovirus‐based bioproducts in insect cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1559–1569, 2016  相似文献   

7.
Summary A clone of the wild type (wt) Anticarsia gemmatalis multiple nuclear polyhedrosis virus AgMNPV, derived from a geographical isolate (Hondrina, Brazil) and designated AgMNPV-CL4-3A1, was used to determine the host range of this virus in six established lepidopteran cell lines: Anticarsia gemmatalis (BCIRL-AG-AM1), Helicoverpa zea (BCIRL-HZ-AM1), Heliothis virescens (BCIRL-HV-AM1), Helicoverpa armigera (BCIRL-HA-AM1), Trichoplusia ni (TN-CL1), Bombyx mori (BMN), and a coleopteran cell line Anthonomus grandis (BRL-AG-1). In addition, the in vivo host range of this clone was also assayed in larvae of Helicoverpa zea, Heliothis virescens, Trichoplusia ni, and the homologous species Anticarsia gemmatalis by probit analysis. On the basis of temporal studies of TCID50 values, BCIRL-HV-AM1 cells gave the highest extracellular virus (ECV) titer (9.7×106 TCID50/ml) followed by BCIRL-HA-AM1 cells (8.3×105 TCID50/ml) and BCIRL-AG-AM1 cells (3.2×105 TCID50/ml). In addition, a low ECV titer of 1.37×103 TCID50/ml was detected from TN-CL1 cells 96 h postinoculation, while BRL-AG-1, BMN, and BCIRL-HZ-AM1 cells were nonpermissive to AgMNPV-CL4-3A1 on the basis of TCID50 results. AgMNPV-CL4-3A1 and the wild type AgMNPV had similar restriction profiles that were different from wild type AcMNPV. The LC50 values were 96.9, 564.6, 733.3, and 1.1×104 occlusion bodies/cm2 of diet for A. gemmatalis, Helicoverpa zea, Heliothis virescens, and T. ni, respectively. This article presents the results of research only. Mention of proprietary products in this article does not indicate endorsement or a recommendation for use by USDA-ARS. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status or handicap.  相似文献   

8.
Animal cells can be cultured both in basal media supplemented with fetal bovine serum (FBS) and in serum-free media. In this work, the supplementation of Grace’s medium with a set of nutrients to reduce FBS requirements in Spodoptera frugiperda (Sf9) cell culture was evaluated, aiming the production of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) at a cost lower than those for the production using Sf900 II medium. In Grace’s medium supplemented with glucose, Pluronic F68 (PF68) and yeast extract (YE), the effects of FBS and milk whey ultrafiltrate (MWU) on cell concentration and viability during midexponential and stationary growth phase were evaluated. In spite of the fact that FBS presented higher statistical effects than MWU on all dependent variables in the first cell passage studies, after cell adaptation, AgMNPV polyhedra production was comparable to that in Sf900 II. Batch cultivation in Grace’s medium with 2.7 g l−1 glucose, 8 g l−1 YE and 0.1% (w/v) PF68 supplemented with 1% (w/v) MWU and 3% (v/v) FBS increased viable cell concentration to about 5-fold (4.7×106 cells ml−1) when compared to Grace’s containing 10% (v/v) FBS (9.5×105 cells ml−1). AgMNPV polyhedra (PIBs) production was around 3-fold higher in the MWU supplemented medium (1.6×107 PIBs ml−1) than in Grace’s medium with 10% FBS (0.6×107 PIBs ml−1). This study therefore shows a promising achievement to significantly reduce FBS concentration in Sf9 insect cell media, keeping high productivity in terms of cell concentration and final virus production at a cost almost 50% lower than that observed for Sf900 II medium. C.A. Pereira is recipient of a CNPq fellowship.  相似文献   

9.

Aims

To increase the l ‐isoleucine production in Corynebacterium glutamicum by overexpressing the global regulator Lrp and the two‐component export system BrnFE.

Methods and Results

The brnFE operon and the lrp gene were cloned into the shuttle vector pDXW‐8 individually or in combination. The constructed plasmids were transformed into an l ‐isoleucine‐producing strain C. glutamicum JHI3‐156, and the l ‐isoleucine production in these different strains was analysed and compared. More l ‐isoleucine was produced when only Lrp was expressed than when only BrnFE was expressed. Significant increase in l ‐isoleucine production was observed when Lrp and BrnFE were expressed in combination. Compared to the control strain, l ‐isoleucine production in JHI3‐156/pDXW‐8‐lrpbrnFE increased 63% in flask cultivation, and the specific yield of l ‐isoleucine increased 72% in fed‐batch fermentation.

Conclusions

Both Lrp and BrnFE are important to enhance the l ‐isoleucine production in C. glutamicum.

Significance and Impact of the Study

The results provide useful information to enhance l ‐isoleucine or other branched‐chain amino acid production in C. glutamicum.  相似文献   

10.

Background  

Huanglongbing (HLB) is a highly destructive disease of citrus production worldwide. 'Candidatus Liberibacter asiaticus', an unculturable alpha proteobacterium, is a putative pathogen of HLB. Information about the biology and strain diversity of 'Ca. L. asiaticus' is currently limited, inhibiting the scope of HLB research and control.  相似文献   

11.

Background  

Paracoccidioides brasiliensis ecology is not completely understood, although several pieces of evidence point to the soil as its most probable habitat. The present study aimed to investigate the fungal growth, conidia production and molecular pathogen detection in different soil conditions.  相似文献   

12.

Background  

Costs and benefits of two Salmonella control policies for broiler production were described and compared. The control options were the Zoonosis Directive 92/117/EC and the more intense strategy, the Finnish Salmonella Control Programme (FSCP).  相似文献   

13.
14.

Background  

The Actinomycete Actinosynnema pretiosum ssp. auranticum has commercial importance due to its production of ansamitocin P-3 (AP-3), a potent antitumor agent. One way to increase AP-3 production would be to constitutively express selected genes so as to relieve bottlenecks in the biosynthetic pathway; however, an integrative expression vector for A. pretiosum is lacking. The aim of this study was to construct a vector for heterologous gene expression in A. pretiosum.  相似文献   

15.

Background  

Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated the function of surface-associated protein DIP1281, previously annotated as hypothetical invasion-associated protein.  相似文献   

16.

Background  

Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments.  相似文献   

17.

Background  

Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates.  相似文献   

18.

Background  

Damask roses (Rosa damascena Mill.) are mainly used for essential oil production. Previous studies have indicated that all production material in Bulgaria and Turkey consists of only one genotype. Nine polymorphic microsatellite markers were used to analyze the genetic diversity of 40 accessions of R. damascena collected across major and minor rose oil production areas in Iran.  相似文献   

19.

Background  

Microorganisms possess diverse metabolic capabilities that can potentially be leveraged for efficient production of biofuels. Clostridium thermocellum (ATCC 27405) is a thermophilic anaerobe that is both cellulolytic and ethanologenic, meaning that it can directly use the plant sugar, cellulose, and biochemically convert it to ethanol. A major challenge in using microorganisms for chemical production is the need to modify the organism to increase production efficiency. The process of properly engineering an organism is typically arduous.  相似文献   

20.

Background  

Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号