首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The objective of this study was to examine the effect of glucocorticoid treatment in early neonatal life on plasma cholesterol and hepatic cholesterol 7 alpha-hydroxylase (CH-7A), the rate-limiting enzyme of bile acid biosynthesis from cholesterol, measured at weaning (Postnatal Day 20). Neonatal rat pups were injected subcutaneously with 5 micrograms of dexamethasone (DEXA) or vehicle (CON) for 5 days between Postnatal Days 4 and 8. On Postnatal Day 20, the animals were used for various studies. DEXA-treated pups weighed significantly less (P less than 0.001) than controls. Even though DEXA-treated animals had significantly smaller livers (P less than 0.001), microsomal protein per gram of liver was significantly greater (P less than 0.005) in the DEXA-treated animals. CH-7A activity (pmole/mg . min) was significantly lower (P less than 0.005) in the DEXA-treated animals (CON (4) 19.4 +/- 2.8; DEXA (4) 5.0 +/- 1.0). Plasma cholesterol (mg/100 ml) was significantly greater (P less than 0.005) in the DEXA-treated animals (CON (5) 179 +/- 7; DEXA (4) 223 +/- 5), a finding consistent with lower CH-7A activity in this group. Taurocholate absorption by in situ ileal loops in anesthetized rats was significantly greater in the DEXA-treated animals in agreement with the in vitro observations of Little and Lester. The basis for the reduced CH-7A activity in DEXA-treated pups is not known. It may be due in part to a new steady state in the enterohepatic circulation of bile acids resulting from a glucocorticoid-induced enhanced conservation of bile acids.  相似文献   

2.
3.
4.
The elevated plasma cholesterol level, in particular, LDL cholesterol is regarded as an important risk factor for the development of atherosclerosis and coronary artery disease. A number of studies provide the evidence that taurine has the efficient action to reduce plasma and liver cholesterol concentrations, especially to decrease VLDL and LDL cholesterol in hypercholesterolemia animal induced by high cholesterol diet. Cholesterol lowering effect of taurine is actually involved in the regulatory mechanism of cholesterol and bile acid homeostasis that mediated by CYP7A1, which has become a biomarker for cholesterol metabolism and itself is also regulated by several factors and nuclear receptors. This review summarizes the change of cholesterol concentration in metabolism observed in feeding studies of hypercholesterolemia animal dealing with taurine, and then, addresses the possible metabolic and molecular mechanisms of cholesterol lowering effect by taurine in three aspects, cholesterol clearance from blood circulation, bioconversion of cholesterol to bile acid in liver, and excretion of cholesterol and bile acid from intestine.  相似文献   

5.
6.
7.
《Biochemical medicine》1981,25(2):168-173
Effect of diabetes induced by streptozotocin during pregnancy on fetal bile acid metabolism was investigated in the rat. Serum bile acid levels of diabetic pregnant rats were higher than those of control pregnant rats. Total pool of primary bile acids (cholic and chenodeoxycholic acids) in fetuses of diabetic mothers was significantly lower than that of control fetuses. However, the concentration of secondary bile acids, i.e., lithocholic, deoxycholic, and 3β, 12α-dihydroxycholanoic acids, was significantly higher in fetuses of diabetic mothers. These results suggest that the alteration in bile acid metabolism noted previously (4) in neonates of diabetic mothers is probably a manifestation of the effect of maternal diabetes at the fetal level.  相似文献   

8.
Kittens were adapted to a semipurified diet and then fed either a control diet that contained 0.1% taurine or a taurine-free diet for 6 weeks; at the end of the feeding period, kittens fed the taurine-free diet had plasma and liver taurine concentrations that were 0.38 and 0.15%, respectively, of those for control kittens. Hepatic cysteinesulfinate decarboxylase activity in taurine-deficient kittens was five-times the level in control kittens, but hepatic cysteine dioxygenase activity was not affected by the dietary treatment. Taurine-conjugated bile acids made up 98% of the total bile acids in the gall bladder of control kittens, but they accounted for only 44% of the total bile acids in the bile of taurine-depleted kittens; both the concentrations of taurine-conjugated bile acids and total bile acids were markedly decreased in taurine-deficient kittens. No effect of taurine depletion on the fractional excretion of taurine in the urine was observed. The kitten may have some mechanisms for adapting to a low-taurine diet, but these are clearly not sufficient to maintain tissue taurine levels in the absence of dietary taurine.  相似文献   

9.
10.
Recently, it has been reported that taurine, an amino acid with anticonvulsant properties, does not suppress experimental seizures generated by the "kindling" technique. This finding seems somewhat paradoxical since taurine antagonizes other sorts of experimental convulsion and since kindled seizures are easily suppressed by other anticonvulsant drugs. Further tests were therefore conducted during which taurine's anticonvulsant effects were assessed: (1) when kindling stimulation was dropped to near-threshold levels; (2) when cortical as well as limbic kindled foci were stimulated; (3) when developing as well as fully kindled seizures were involved; and (4) when taurine was introduced directly into the ventricles of the brain. Even in these tests which were specifically designed to favour the appearance of anticonvulsant effects, no taurine antagonism of kindled seizures was found.  相似文献   

11.
The effect of DMSO on cholesterol and bile acid metabolism was studied in rats. Male Sprague-Dawley rats were randomly assigned to one of two groups and given either tap water or 2% DMSO (v/v) in tap water to drink for 9 days. Both food (stock rat diet) and water were available ad libitum. Animals in both groups gained weight equally throughout the study. They also had similar liver weights (g/100 g body wt) at the end of the study (control: 5.0 +/- 0.1 (N = 6) vs DMSO: 4.9 +/- 0.1 (N = 6]. The activity of hepatic cholesterol 7 alpha-hydroxylase (pmole/mg/min), the rate-limiting enzyme of bile acid biosynthesis, was significantly (P less than 0.005) reduced in the treated animals (control: 9.7 +/- 1.0 (N = 6) vs DMSO: 4.3 +/- 0.7 (N = 6)). Plasma cholesterol (mg/dl) was significantly (P less than 0.005) elevated in the treated animals (control: 90 +/- 3 (N = 6) vs DMSO: 107 +/- 4 (N = 6)), a finding consistent with the reduced CH-7 alpha hydroxylase activity in this group. DMSO treatment did not affect either microsomal cholesterol content or hepatic glutathione content. Thus, this study has shown that DMSO treatment per se can affect cholesterol and bile acid metabolism. However, the precise mechanisms whereby DMSO exerts the observed effects are not known.  相似文献   

12.
13.
The effect of chylomicron remnants on bile acid synthesis in isolated rat hepatocytes in monolayer cultures was investigated. Production of bile acids by the cells in the presence of chylomicron remnants at a cholesterol concentration of 7.8-9 nmol/ml was increased by approx. 75% after 17 h and 25% after 24 h incubation. Similar concentrations of cholesterol added to the cells in the form of chylomicrons had no significant effect on bile acid synthesis. These results suggest that cholesterol taken up in chylomicron remnants may be an important source of substrate for bile acid synthesis.  相似文献   

14.
The hepatic uptake of chenodeoxycholic acid, taurochenodeoxycholic acid, chenodeoxycholic acid 3-sulphate and taurochenodeoxycholate acid 3-sulphate by isolated rat hepatocytes was examined. Taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake occurred by a saturable, energy-dependent process while chenodeoxycholic acid uptake was predominantly non-saturable, possibly simple diffusion. Apparent Km (mumol/l) and Vmax (nmol/mg protein per min) values (mean +/- S.D.), respectively, were: chenodeoxycholic acid (saturable component), 33 +/- 6.4 and 4.8 +/- 0.6; taurochenodeoxycholic acid, 11.1 +/- 2.0 and 3.1 +/- 0.5; chenodeoxycholic acid 3-sulphate, 6.1 +/- 0.9 and 2.3 +/- 0.4; and taurochenodeoxycholic acid 3-sulphate, 5.0 +/- 0.7 and 0.9 +/- 0.15. Both conjugation with taurine and sulphation at the 3 position resulted in a reduction in the values of Km and Vmax. Uptake of each of the bile acids taurochenodeoxycholic acid, taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate was competitively inhibited by the other two, with taurochenodeoxycholic acid a potent inhibitor of both taurochenodeoxycholic acid 3-sulphate and chenodeoxycholic acid 3-sulphate uptake. Other bile acids also inhibited. Uptake was inhibited by albumin in the order chenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid 3-sulphate greater than taurochenodeoxycholic acid and was dependent on the extent of bile acid binding to albumin.  相似文献   

15.
Role of taurine on acid secretion in the rat stomach   总被引:1,自引:0,他引:1  

Background  

Taurine has chemical structure similar to an inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Previous studies on GABA in the stomach suggest GABAergic neuron is involved in acid secretion, but the effects of taurine are poor understood.  相似文献   

16.
17.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosaspentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPa are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a ‘Max EPA’ fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA grou than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

18.
The metabolism of bile acids in the developing rat liver   总被引:1,自引:0,他引:1  
  相似文献   

19.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosapentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPA are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a 'Max EPA' fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F1 alpha but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA group than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

20.
Summary. Taurine as well as tauret (retinyliden taurine) levels were measured in locust Locusta migratoria compound eyes. HPLC measurements revealed relatively low taurine levels (1.9 ± 0.16 mM) in dark-adapted eyes. Glutamate, aspartate and glycine levels were 2.0 ± 0.2, 2.7 ± 0.4 and 3.0 ± 0.37 mM, respectively, while GABA was present only in trace amounts. After about 4 h of light adaptation at 1500–2000 lx, amino acid levels in the compound eye were as follows: taurine, 1.8 ± 0.17 mM; glutamate, no change at 2.1 ± 0.2 mM; aspartate sharply increased to 4.7 ± 0.7 mM; glycine slightly decreased to 2.8 ± 0.3 mM; and GABA trace levels. In the compound eye of locust Locusta migratoria, the existence of endogenous tauret in micro-molar range was established. In the dark, levels were several times higher compared with compound eye after light adaptation 1500 lx for 3 h, as estimated by TLC in combination with spectral measurements. Existence of tauret in compound eye is of special interest because in the compound eye, rhodopsin regeneration is based on photoregeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号