首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the phosphorylation of the beta subunit of the insulin receptor in intact freshly isolated rat hepatocytes, labelled with [32P]Pi. Insulin receptors partially purified by wheat-germ agglutinin chromatography were immunoprecipitated with either antibodies to insulin receptor or antibodies to phosphotyrosine. Receptors derived from cells incubated in the absence of insulin contained only phosphoserine. Addition of insulin to hepatocytes led to a dose-dependent increase in receptor beta-subunit phosphorylation, with half-maximal stimulation being observed at 2 nM-insulin. Incubation of cells with 100 nM-insulin showed that, within 1 min of exposure to the hormone, maximal receptor phosphorylation occurred, which was followed by a slight decrease and then a plateau. This insulin-induced stimulation of its receptor phosphorylation was largely accounted for by phosphorylation on tyrosine residues. Sequential immunoprecipitation of receptor with anti-phosphotyrosine antibodies and with anti-receptor antibodies, and phosphoamino acid analysis of the immunoprecipitated receptors, revealed that receptors that failed to undergo tyrosine phosphorylation were phosphorylated on serine residues. The demonstration of a functional hormone-sensitive insulin-receptor kinase in normal cells strongly supports a role for this receptor enzymic activity in mediating biological effects of insulin.  相似文献   

2.
In intact rat hepatocytes insulin stimulates the phosphorylation of the beta-subunit of its receptor exclusively on serine residues, which are also phosphorylated in the absence of insulin. In contrast, in partially purified insulin receptors derived from these same cells and in highly purified insulin receptors obtained by immunoprecipitation with anti-receptor antibodies, the receptor beta-subunit is phosphorylated solely on tyrosine residues. For both cell-free systems, insulin's stimulatory action on receptor phosphorylation leads to an increase in phosphotyrosine. When partially purified receptors were used to phosphorylate two exogenous substrates, casein and histone, insulin was found to stimulate the phosphorylation of both tyrosine and serine. However, the basal and insulin-stimulated kinase activity of immunoprecipitated receptors was only tyrosine-specific. From these observations we propose that the insulin-receptor complex consists of two different insulin-stimulatable kinase activities: (1) a tyrosine-specific kinase, which is a constituent of the insulin-receptor structure and whose activation is likely to be the first post-binding event in insulin action; and (2) a serine-specific kinase, which is closely associated with the receptor in the cell membrane.  相似文献   

3.
In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography (HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor. The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner.  相似文献   

4.
Trypsin treatment of a partially purified insulin receptor preparation from rat adipocytes stimulated the phosphorylation of 90,000- and 72,000-Da polypeptides immunoprecipitated by anti-insulin receptor antibody. The phosphorylation of tyrosine residues alone was observed in both polypeptides. Trypsin concentrations which stimulated insulin receptor phosphorylation were the same as those previously shown to activate rat adipocyte glycogen synthase. Trypsin treatment of the insulin receptor fraction also stimulated the phosphorylation of an exogenous substrate of tyrosine kinase similarly to insulin treatment. Trypsin treatment of a highly purified insulin receptor from human placenta also activated the phosphorylation of the receptor-derived peptides. These results suggest that the insulin-stimulated protein kinase, a component of the insulin receptor, was activated by tryptic digestion to phosphorylate polypeptides derived from the insulin receptor itself. Thus, it is suggested that stimulation by trypsin of phosphorylation of the insulin receptor may be related to the insulin-like metabolic actions of trypsin observed in rat adipocytes.  相似文献   

5.
B Bhaumick  R M Bala 《Life sciences》1989,44(22):1685-1696
Autophosphorylation of insulin and insulin-like growth factor (IGF)-I receptors were measured in lectin purified receptor preparations from placentas of normal and diabetic patients. The basal and insulin or IGF-I stimulated phosphorylation of the approximately 94 kD protein, corresponding to beta-subunit of the insulin and IGF-I receptors, were approximately 2 times greater (p less than 0.05) in placentas from diabetic patients with poor glycemic control (as judged by their serum HbA1c level) compared to the normals. The magnitude of IGF-I or insulin stimulation of the phosphorylation of the 94 kD protein was comparable in placentas from both diabetic and normal patients. Immunoprecipitation and immunodepletion of IGF-I receptor by alpha-IR3, a monoclonal antibody to IGF-I receptor, revealed the increased basal phosphorylation of the approximately 94 kD protein in placentas of diabetic patients to be associated with IGF-I and insulin receptors. The magnitude of IGF-I and insulin stimulated phosphorylation of the immunoprecipitated and immunodepleted IGF-I receptor, respectively, was the same in both normal and diabetic patients. These results suggested that the increased basal phosphorylation of the 94 kD protein in placentas from diabetic patients may be intrinsic to IGF-I and insulin receptor, however, the regulatory mechanisms effecting the increase may not be dependent on IGF-I or insulin.  相似文献   

6.
Greene MW  Garofalo RS 《Biochemistry》2002,41(22):7082-7091
Insulin receptor substrates (IRS) 1 and 2 are phosphorylated on serine/threonine (Ser/Thr) residues in quiescent cells (basal phosphorylation), and phosphorylation on both Ser/Thr and tyrosine residues is increased upon insulin stimulation. To determine whether basal Ser/Thr phosphorylation of IRS proteins influences insulin receptor catalyzed tyrosine phosphorylation, recombinant FLAG epitope-tagged IRS-1 (F-IRS-1) and IRS-2 (F-IRS-2) were expressed, purified, and subjected to both dephosphorylation and hyperphosphorylation prior to phosphorylation by the insulin receptor kinase. As expected, hyperphosphorylation of F-IRS-1 and F-IRS-2 by GSK3beta decreased their subsequent phosphorylation on tyrosine residues by the insulin receptor. Surprisingly, however, dephosphorylation of the basal Ser/Thr phosphorylation sites impaired subsequent phosphorylation on tyrosine, suggesting that basal Ser/Thr phosphorylation of F-IRS-1 and F-IRS-2 plays a positive role in phosphorylation by the insulin receptor tyrosine kinase. Dephosphorylation of basal Ser/Thr sites on F-IRS-1 also significantly reduced tyrosine phosphorylation by the IGF-1 receptor. However, dephosphorylation of F-IRS-2 significantly increased phosphorylation by the IGF-1 receptor, suggesting that basal phosphorylation of IRS-2 has divergent effects on its interaction with the insulin and IGF-1 receptors. Phosphorylation of endogenous IRS-1 and IRS-2 from 3T3-L1 adipocytes was modulated in a similar manner. IRS-1 and IRS-2 from serum-fed cells were hyperphosphorylated, and dephosphorylation induced either by serum deprivation or by alkaline phosphatase treatment after immunoprecipitation led to an increase in tyrosine phosphorylation by the insulin receptor. Dephosphorylation of IRS-1 and IRS-2 immunoprecipitated from serum-deprived cells, however, resulted in inhibition of tyrosine phosphorylation by the insulin receptor. These data suggest that Ser/Thr phosphorylation can have both a positive and a negative regulatory role on tyrosine phosphorylation of IRS-1 and IRS-2 by insulin and IGF-1 receptors.  相似文献   

7.
Monoclonal antibodies to receptors for insulin and somatomedin-C   总被引:40,自引:0,他引:40  
Three monoclonal antibodies, designated alpha IR-1, alpha IR-2, and alpha IR-3, were prepared by fusing FO myeloma cells with spleen cells from a mouse immunized with a partially purified preparation of insulin receptors from human placenta. These antibodies were characterized by their ability to immunoprecipitate solubilized receptors labeled with 125I-insulin or 125I-somatomedin-C in the presence or absence of various concentrations of unlabeled insulin or somatomedin-C. alpha IR-1 preferentially immunoprecipitates insulin receptors and also less effectively immunoprecipitates somatomedin-C receptors, while alpha IR-2 and alph IR-3 preferentially immunoprecipitate somatomedin-C receptors, but may also weakly immunoprecipitate insulin receptors. These three monoclonal antibodies, as well as A410, a rabbit polyclonal antibody, were used to immunoprecipitate insulin and somatomedin-C receptors from solubilized human lymphoid (IM-9) cells and human placenta membranes that had been 125I-labeled with lactoperoxidase. Analysis of the immunoprecipitates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both receptors are composed of alpha and beta subunits. The beta subunit of the insulin receptor (immunoprecipitated by alpha IR-1 and A410) has a slightly more rapid mobility than the corresponding subunit of the somatomedin-C receptor (immunoprecipitated by alpha IR-2 and alpha IR-3). Interestingly, the alpha subunit of the placenta somatomedin-C receptor has a slightly faster mobility than its counterpart from IM-9 cells. Immunoprecipitation of receptor that had been reduced and denatured to generate isolated subunits indicates that alpha IR-2 and alpha IR-3 interact with the alpha subunit of the somatomedin-C receptor while A410 interacts with both subunits of the insulin receptor. alpha IR-1 failed to react with reduced and denatured receptors.  相似文献   

8.
An endogenous substrate for the insulin receptor-associated tyrosine kinase   总被引:16,自引:0,他引:16  
Insulin binding to its receptor stimulates a tyrosine-specific protein kinase. This enzyme phosphorylates the insulin receptor, as well as a variety of exogenous substrates in vitro. In the present studies, we have identified an endogenous substrate for the insulin receptor-associated kinase. We studied insulin-stimulated protein phosphorylation in partially purified insulin receptor preparations from the livers of dexamethasone-treated rats. In this cell-free system, insulin stimulated the phosphorylation of its own receptor as well as of a phosphoprotein of apparent Mr = 120,000 (termed pp120). pp120 was not immunoprecipitated by three anti-receptor antisera, nor was the receptor immunoprecipitated by antisera raised against pp120, suggesting that pp120 is not antigenically related or tightly bound to the insulin receptor. Dose-response curves for receptor and pp120 phosphorylation stimulated by pork insulin were essentially identical, and showed the appropriate specificity (insulin much greater than proinsulin) for a receptor-mediated event. Phosphoamino acid analysis revealed that insulin stimulated the incorporation of 32P predominantly into tyrosine residues of pp120. Casein, an artificial substrate for the insulin receptor kinase, competed with pp120 for insulin-stimulated phosphorylation. Phosphorylation of pp120 was rapid (half-maximal effect within 2 min at 24 degrees C) and, like receptor phosphorylation, was supported with Mn2+ or Mg2+ as divalent cation and ATP as the phosphate donor. While receptor autophosphorylation and artificial substrate phosphorylation were not altered by prior treatment of the rats with dexamethasone, insulin-stimulated pp120 phosphorylation was enhanced in preparations derived from dexamethasone-treated rats, suggesting an alteration of pp120, not the receptor, as a result of dexamethasone-treatment. Further studies of this newly identified endogenous substrate may help clarify the physiologic role of the insulin receptor-associated kinase.  相似文献   

9.
Assembly of insulin/insulin-like growth factor-1 hybrid receptors in vitro   总被引:8,自引:0,他引:8  
Insulin and Mn/MgATP treatment of immunoaffinity-purified alpha beta heterodimeric insulin receptors induced the formation of an alpha 2 beta 2 heterotetrameric insulin receptor complex. In contrast, insulin-like growth factor-1 (IGF-1) treatment was completely ineffective in inducing the association of alpha beta heterodimeric insulin receptors. Similarly, IGF-1 or Mn/MgATP, but not insulin, treatment of immunoaffinity-purified alpha beta heterodimeric IGF-1 receptors induced the formation of an alpha 2 beta 2 heterotetrameric IGF-1 receptor complex. A monoclonal antibody specific for the insulin receptor (MA5) completely immunoprecipitated all the insulin binding activity from both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes but did not immunoprecipitate IGF-1 receptors. Conversely, the IGF-1 receptor-specific monoclonal antibody (alpha IR-3) immunoprecipitated all the IGF-1 binding activity, but not insulin receptors. The simultaneous treatment of pooled equal amounts of alpha beta heterodimeric insulin and IGF-1 receptors with a combination of insulin and IGF-1 resulted in the formation of alpha 2 beta 2 heterotetrameric insulin and IGF-1 receptor complexes. However, in the mixed alpha 2 beta 2 heterotetrameric receptor fraction MA5 immunoprecipitated 94% of the insulin binding in addition to 27% of the IGF-1 binding activity whereas alpha IR-3 immunoprecipitated 97% of the IGF-1 binding in addition to 38% of the insulin binding activity. Treatment of the mixed alpha beta heterodimeric insulin and IGF-1 receptors with Mn/MgATP also resulted in the formation of cross-immunoreactive (42-46%) alpha 2 beta 2 heterotetrameric receptors. These data directly demonstrate the formation of insulin/IGF-1 hybrid receptors by both a combination of insulin plus IGF-1 or Mn/MgATP treatment of purified human placenta alpha beta heterodimeric insulin and IGF-1 half-receptors in vitro.  相似文献   

10.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

11.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

12.
To determine whether heterologous receptor tyrosine kinases interact with each other we have investigated the ability of insulin receptors to transphosphorylate and transactivate IGF-I receptors. Using partially purified receptors we show that hormone-stimulated insulin receptors induced a 40% increase in IGF-I receptor phosphorylation. Remarkably, this transphosphorylation of IGF-I receptors by insulin receptors resulted in a 2.5-fold augmentation of the IGF-I receptor tyrosine kinase activity for substrates. Our findings demonstrate that transphosphorylation with transactivation can occur between insulin and IGF-I receptors. We would like to propose that such a phenomenon participates in the insulin-induced pleiotropic program by mediating the growth promoting effects of the hormone.  相似文献   

13.
Insulin receptors on RINm5F cell membranes (an insulin-producing rat pancreatic cell line) were studied. To study the insulin receptor alpha-subunit, 125I-labelled photoreactive insulin was covalently bound to the membranes in the absence or presence of unlabelled insulin. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions showed specific labelling of an Mr 130 000 protein. The receptor beta-subunit was studied by using a cell-free phosphorylation assay. Analysis under reducing conditions showed a phosphoprotein of Mr 95 000 whose level of phosphorylation was selectively increased by insulin, and which was specifically immunoprecipitated by antibodies to the insulin receptor. Further, covalent hormone-receptor complexes purified with anti-insulin antibodies were able to undergo autophosphorylation, indicating the existence of operational receptor subunit arrangements. RINm5F cell insulin receptors (and, by analogy, possibly those of native B-cells) thus display structural and functional integrity comparable with those of conventional insulin target cells.  相似文献   

14.
To examine the possibility that insulin might stimulate calmodulin phosphorylation in intact cells, we compared autoradiographs of two-dimensional gels of [35S]methionine- and 32P-labeled proteins from 3T3-L1 adipocytes, before and after immunoprecipitation with anti-calmodulin antiserum. Insulin stimulated the phosphorylation of one or two proteins of approximately 22 kDa and pI 4.6; this increased phosphorylation was accompanied by an apparent shift in the position of the analogous [35S]methionine-labeled proteins towards the anode. In contrast, insulin had no effect on the phosphorylation state of another protein of 18-22 kDa and pI 4.6. This protein was very heavily labeled with [35S]methionine, co-migrated exactly with purified calmodulin, reacted specifically with two anti-calmodulin antibodies by Western blotting, and was specifically immunoprecipitated with the anti-calmodulin antiserum. Similar amounts of [35S]methionine-labeled calmodulin were immunoprecipitated from control and insulin-stimulated cells, arguing against the possibility that insulin-stimulated phosphorylation of calmodulin changed its affinity for the antibody. We conclude that calmodulin is phosphorylated to a negligible extent in serum-deprived 3T3-L1 adipocytes and that insulin does not stimulate its phosphorylation under conditions in which it stimulates the phosphorylation of one or more neighboring proteins.  相似文献   

15.
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines.  相似文献   

16.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

17.
It has previously been demonstrated that calmodulin can be phosphorylated in vitro and in vivo by both tyrosine-specific and serine/threonine protein kinase. We demonstrate here that the insulin receptor tyrosine kinase purified from human placenta phosphorylates calmodulin. The highly purified receptors (prepared by insulin-Sepharose chromatography) were 5-10 times more effective in catalysing the phosphorylation of calmodulin than an equal number of partially purified receptors (prepared by wheat-germ agglutinin-Sepharose chromatography). Phosphorylation occurred exclusively on tyrosine residues, up to a maximum of 1 mol [0.90 +/- 0.14 (n = 5)] of phosphate incorporated/mol of calmodulin. Phosphorylation of calmodulin was dependent on the presence of certain basic proteins and divalent cations. Some of these basic proteins, i.e. polylysine, polyarginine, polyornithine, protamine sulphate and histones H1 and H2B, were also able to stimulate the phosphorylation of calmodulin via an insulin-independent activation of the receptor tyrosine kinase. Addition of insulin further increased incorporation of 32P into calmodulin. The magnitude of the effect of insulin was dependent on the concentration and type of basic protein used, ranging from 0.5- to 9.0-fold stimulation. Maximal phosphorylation of calmodulin was obtained at an insulin concentration of 10(-10) M, with half-maximal effect at 10(-11) M. Either Mg2+ or Mn2+ was necessary to obtain phosphorylation, but Mg2+ was far more effective than Mn2+. In contrast, maximal phosphorylation of calmodulin was observed in the absence of Ca2+. Inhibition of phosphorylation was observed as free Ca2+ concentration exceeded 0.1 microM, with almost complete inhibition at 30 microM free Ca2+. The Km for calmodulin was approx. 0.1 microM. To gain further insight into the effects of basic proteins in this system, we examined the binding of calmodulin to the insulin receptor and the polylysine. Calmodulin binds to the insulin receptor in a Ca2+-dependent manner, whereas it binds to polylysine seemingly by electrostatic interactions. These studies identify calmodulin as a substrate for the highly purified insulin receptor tyrosine kinase of human placenta. They also demonstrate that the basic proteins, which are required for insulin to stimulate the phosphorylation of calmodulin, do so by a direct interaction with calmodulin.  相似文献   

18.
Phosphorylation of membrane proteins is one of the earliest steps in cell activation induced by growth-promoting agents. Since MHC (major histocompatibility complex) class I molecules are known to contain phosphorylation sites in their C-terminal intracellular domain, we have studied the regulation of HLA (human leucocyte antigen) phosphorylation in intact cells by two mitogens, namely TPA (12-O-tetradecanoylphorbol 13-acetate), a phorbol ester, and insulin, which are thought to exert their mitogenic effects through the stimulation of different protein kinases (protein kinase C and a tyrosine kinase respectively). Human B lymphoblastoid cells (526 cell line) were pulsed with [32P]Pi to label the intracellular ATP pool. Cells were then stimulated for 10 min with TPA, insulin, cyclic AMP or EGF (epidermal growth factor). The reaction was stopped by cell lysis in the presence of kinase and phosphatase inhibitors, and class I HLA antigens were immunoprecipitated with monoclonal antibodies. Analysis of labelled proteins by gel electrophoresis and autoradiography revealed that TPA increased the phosphorylation of the 45 kDa class I heavy chain by 5-7-fold, and insulin increased it by 2-3-fold. Cyclic AMP and EGF had no stimulatory effect. Analysis of immunoprecipitated HLA molecules by two-dimensional gel electrophoresis showed that TPA and insulin stimulated the incorporation of 32P into different 45 kDa molecular species, suggesting that different sites were phosphorylated by two agents. Moreover, incubation of purified class I MHC antigens with partially purified insulin-receptor tyrosine kinase and [gamma-32P]ATP revealed that class I antigens could also be phosphorylated in vitro by this tyrosine kinase. Altogether, these results therefore confirm that insulin receptors and HLA class I molecules are not only structurally [Fehlmann, Peyron, Samson, Van Obberghen, Brandenburg & Brossette (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8634-8637] but also functionally associated in the membranes of intact cells.  相似文献   

19.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

20.
Insulin receptor kinase activity was measured in partially purified receptor preparations from livers of rats fed a standard diet or subjected to either prolonged fasting or a high carbohydrate (CHO) diet, conditions known to decrease (fasting) and increase (CHO) insulin action. Basal and insulin-stimulated phosphorylation of the beta subunit of the insulin receptor was comparable in all groups with a half-maximal effect at approximately 2.0 ng/ml free insulin and a 10-12-fold maximal effect. The kinase activity of insulin receptors from the three groups was further examined using the synthetic polypeptide Glu 4:Tyr 1. Basal and insulin-stimulated rates of Glu 4:Tyr 1 phosphorylation were highest in the CHO-fed and lowest in the fasted group. The magnitude of these differences was the same in the absence or presence of insulin; thus, the alterations in receptor kinase activity in fasting and CHO feeding were entirely expressed in the basal rate of peptide phosphorylation. Antireceptor antibody immunoprecipitated 70-80% of the basal Glu 4:Tyr 1 kinase activity in each group; the remaining 20-30% showed minor group differences when normalized for the amount of protein present in the receptor preparations. These results indicate that the group differences in basal kinase were intrinsic to the insulin receptor. Insulin increased the Vmax of Glu 4:Tyr 1 phosphorylation by approximately 30 fmol of phosphorus/fmol of binding activity/30 min in all three groups; however, the absolute Vmax was highest in the CHO-fed and lowest in the fasted group. The Km of Glu 4:Tyr 1 phosphorylation was unaffected by insulin and was comparable (approximately 0.25 mg/ml) in the three groups. These findings indicate that fasting and CHO feeding produce changes in receptor kinase activity which are regulated by mechanisms independent of insulin and that the alterations show substrate specificity so that differences are detected with one substrate (Glu 4:Tyr 1) but not another (the beta subunit).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号