首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of four different bacteriocins produced byKlebsiella pneumoniae andCitrobacter freundii strains with cells ofKlebsiella edwardsii var.edwardsii has been studied. All four bacteriocins have different activity spectra. The existence of multi-tolerant and multi-receptor-negative mutants supports the hypothesis that the specific receptor sites for these bacteriocins on sensitive bacteria have some components in common.Bacteriocins S6 and S8, produced byKlebsiella pneumoniae strains inhibit protein biosynthesis. Colicin A, produced byCitrobacter freundii inhibits all macromolecular synthesis, but pre-treatment of sensitive cells with colicin A had no influence on the production of ATP by oxidative phosphorylation in cell homogenates. Bacteriocin G196, also produced byCitrobacter freundii inhibits protein and RNA synthesis, with little effect on DNA synthesis. Homogenates of cells pre-treated with bacteriocin G196, show a substantial phosphorylating activity.The authors wish to thank Dr. W. de Vries for performing P:O measurements. The skilful technical assistance of Miss E. A. Spanjaerdt Speckman and Miss W. M. C. Kapteijn is gratefully acknowledged.The investigations were supported (in part) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

2.
BothEnterobacter cloacae H478 andKlebsiella edwardsii S15 were shown to harbour a relatively large conjugative plasmid that coded for cloacin DF13-susceptibility and the production and uptake of a hydroxamate iron chelator, most probably aerobactin. Protein-blotting experiments with antiserum raised against the purified cloacin DF13/aerobactin receptor protein fromEscherichia coli (Co1V-K30) revealed that the corresponding outer membrane receptor proteins ofEnt. cloacae H478 andK. edwardsii S15 had apparent mol wts of 85 000 and 76000, respectively.E. coli transconjugants harbouring either the plasmid fromEnt. cloacae H478 orK. edwardsii S15 expressed a cloacin DF13/aerobactin outer membrane receptor protein with a mol wt of 74000. The receptor protein encoded by theEnt. cloacae andK. edwardsii plasmids were immunologically more related to each other than to the pCo1V-K30-encoded receptor protein.  相似文献   

3.
Enterobacter cloacae DF 13 produces a bacteriocin with killing action onKlebsiella edwardsii var.edwardsii. The degree of sensitivity to the bacteriocin depended on the medium in which the cells were grown and on the bacteriocin concentration used. An excess of bacteriocin (60 K.U./ml) arrested growth in about 60 min. Growth of bacteriocin-treated cultures could be restored by trypsin treatment. In Brain Heart Infusion cultures trypsin rapidly restored bacterial growth even after 60 min of bacteriocin treatment. However, in broth cultures and minimal medium cultures treated with bacteriocin for only 10 min, it took 4 to 5 hr before growth started again. The bacteriocin had little effect on resting cells. Broth-grown cells had about 280 and BHI-grown cells about 340 bacteriocin receptor sites. Bacteriocin DF 13 strongly inhibited protein synthesis after a lag-time of 15 to 60 min depending on the concentration used but had no effect on RNA and DNA synthesis nor on respiration and fermentation. The bacteriocin stimulated RNA synthesis in a leucine-deficient mutant after leucine deprivation.We are grateful to W. Schipper and H. R. de Jonge for assistence in some experiments. The investigations were supported (in part) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

4.
Staphylococcin 1580 increased the relative amount of diphosphatidylglycerol and decreased the amount of phosphatidylglycerol in cells of Staphlococcus aureus, while the amounts of lysylphosphatidylglycerol, phosphatidic acid and total phospholipid remained constant.Treatment of cells of Escherichia coli and S. aureus with colicin A and staphylococcin 1580, respectively, did not affect proton impermeability but subsequent addition of carbonylcyanide-m-chlorophenylhydrazone resulted in a rapid influx of protons into the cells.Bacteriocin-resistant and -tolerant mutants of E. coli and S. aureus were isolated. The bacteriocins caused leakage of amino acids preaccumulated into membrane vesicles of resistant mutants and had no significant effect on membrane vesicles of tolerant mutants.The uptake of amino acids into membrane vesicles was inhibited by both bacteriocins, irrespective of the electron donors applied. The bacteriocin inhibition was noncompetitive. The bacteriocins did not affect oxygen consumption and dehydrogenases in membrane vesicles.Both bacteriocins suppressed the decrease in the fluorescence of 1-anilino-8-naphthalene sulfonate caused by d-lactate or α-glycerol phosphate when added to membrane vesicles.It is concluded that the bacteriocins uncouple the transport function from the electron transport system.  相似文献   

5.
Most bacterially produced antimicrobial peptides (bacteriocins) are thought to kill target cells by a receptor‐mediated mechanism. However, for most bacteriocins the receptor is unknown. For instance, no target receptor has been identified for the two‐peptide bacteriocins (class IIb), whose activity requires the combined action of two individual peptides. To identify the receptor for the class IIb bacteriocin lactococcin G, which targets strains of Lactococcus lactis, we generated 12 lactococcin G‐resistant mutants and performed whole‐genome sequencing to identify mutations causing the resistant phenotype. Remarkably, all had a mutation in or near the gene uppP (bacA), encoding an undecaprenyl pyrophosphate phosphatase; a membrane protein involved in peptidoglycan synthesis. Nine mutants had stop codons or frameshifts in the uppP gene, two had point mutations in putative regulatory regions and one caused an amino acid substitution in UppP. To verify the receptor function of UppP, it was shown that growth of non‐sensitive Streptococcus pneumoniae could be inhibited by lactococcin G when L. lactis uppP was expressed in this bacterium. Furthermore, we show that the related class IIb bacteriocin enterocin 1071 also uses UppP as receptor. The approach used here should be broadly applicable to identify receptors for other bacteriocins as well.  相似文献   

6.
Spontaneous colicin A-resistant and -tolerant mutants were isolated fromCitrobacter freundii and classified in five different groups on basis of their sensitivity to bacteriocin S6 produced byKlebsiella pneumoniae. One group of colicin A-resistant mutants was extremely sensitive to ampicillin and desoxycholate; one group of colicin-A-tolerant mutants was extremely sensitive to ampicillin, desoxycholate and EDTA. One of the bacteriocin-S6-insensitive mutants showed filament formation in liquid medium. The cell envelope of one representative strain of each group was isolated and fractionated in a cell-wall- and a cytoplasmic-membrane-enriched fraction. Polyacrylamide-gel electrophoresis of these fractions showed that both fractions differ from those of the wild-type strain in the relative amounts of some proteins. The differences in the cell envelope of all mutants concerned for the greater part the same proteins. Data obtained by phospholipid analysis of the cell envelope of the mutants showed no significant differences.  相似文献   

7.
Strains of Serratia marcescens were compared and differentiated by a new method. Bacteriocin lysates were prepared from mitomycin-induced S. marcescens and added to lawns of test strains. From 100 bacteriocin producers, 12 were chosen with the aid of computer analysis as the most useful in differentiation. Uniform drops of the 12 standard bacteriocins were added simultaneously with a bacteriocin-bacteriophage dropper to each strain to be typed. All 93 strains of S. marcescens tested were typable and were differentiated into 79 different sensitivity patterns. One pattern had three strains, 12 patterns had two strains each, and 66 patterns had only one strain. The bacteriocins also inhibited Shigella, Klebsiella, and Enterobacter, but no other Enterobacteriaceae. Bacteriocin sensitivity was less stable as an epidemiological marker than bacteriocin production. Several colonial mutants had sensitivity patterns different from the wild types, but most mutants were identical. In three different instances when cross-infection had been shown by other methods, bacteriocin sensitivity also gave the correct epidemiological results. Until the significance and frequency of genetic variations are known, a more stable epidemiological technique should be used in conjunction with bacteriocin sensitivity.  相似文献   

8.
The sigma54 factor has been previously described to be involved in Listeria monocytogenes sensitivity to mesentericin Y105, a subclass IIa bacteriocin. Here, we identified the rpoN gene, encoding sigma54, of Enterococcus faecalis JH2-2 and showed that its interruption leads to E. faecalis resistance to different subclass IIa bacteriocins. Moreover, this rpoN mutant remained sensitive to nisin, a class I bacteriocin, suggesting that sigma54 is especially involved in sensitivity to subclass IIa bacteriocins. Received: 5 May 2000 / Accepted 28 June 2000  相似文献   

9.
The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.  相似文献   

10.
Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages, produce bacteriocins antagonistic towards closely related species and pathogens, such as Listeria monocytogenes. The bacteriocins were inactivated by proteolytic enzymes and lipase but not by catalase and lysozyme. They were also heat stable, retaining activity after heating at 100 °C for 60 min. The bacteriocins were stable at pH values ranging from 2.0 to 8.0. Bacteriocin production was observed at low temperatures (10 and 4 °C) and in meat juice. The maximum bacteriocin activity was observed at the end of the exponential growth phase. The bacteriocins were produced in media with initial pH values ranging from 5.0 to 7.5, but not in media with a pH lower than 5.0 (weak bacteriocin activity of the antibacterial compound produced by Ln. mesenteroides L124 was observed at pH 4.5). Both bacteriocins exhibited strong bactericidal activity following cell/bacteriocin contact.  相似文献   

11.
A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14–20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to ~60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed ~2.8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.  相似文献   

12.
Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.  相似文献   

13.
Mutants that adsorb certain colicins without being killed, i.e., tolerant mutants (tol), were isolated from Escherichia coli K-12 strains. Selection was done either with colicin K or E2. Several groups of mutants showing different phenotypes were found, and some of them showed tolerance to both K and E colicins, which have different receptors. Many of these mutants mapped near gal. Typical mutants from group II, III, and IV were studied in more detail. The mutant loci were contransducible with gal by phage P1. The linkage order was deduced to be tol-gal-λ. In partially diploid strains, these mutant loci are recessive to wild-type alleles. Temperature-dependent conditionally tolerant mutants were also isolated. Two groups were found: the first was tolerant to E2 and E3 at 40 C, but sensitive at 30 C; the second was tolerant to E2 at 30 C, but sensitive at 40 C. Experiments done with these mutants suggest that these mutations affect the heat lability of some protein that is necessary for the response of cells to colicins. Conditionally lethal tolerant mutants were isolated which at 40 C were tolerant to E2 and E3 and could not grow, but which at 30 C were fully sensitive and grew normally. The mutation mapped near malA. The tolerance at 40 C is not due to a consequence of an inactivation of general cellular metabolism, but presumably is a cause of the subsequent inhibition of cellular growth. The results suggest that some protein components involved in the response to colicin are also vital to normal cellular growth.  相似文献   

14.
Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.  相似文献   

15.
Bacteriocin production was tested in 36Klebsiella and 3Enterobacter aerogenes strains. Bacteriocins produced byK. pneumoniae were found to be active on most strains ofK. edwardsi, K. aerogenes, K. rhinoscleromatis andE. aerogenes. The bacteriocin produced byE. aerogenes 37 is also active onK. pneumoniae andK. ozaenae. The bacteriocins produced byK. rhinoscleromatis, K. edwardsi andK. aerogenes are active on only a few strains. The activity spectra of the bacteriocins of a number of strains were similar. The method of classification used for colicins could not be applied to these bacteriocins as mutants resistant to one bacteriocin were nearly always resistant to all other bacteriocins. One mutant, though resistant, still adsorbed the bacteriocin to which it was resistant and it is very likely that the same applies for all other resistant mutants. The hypothesis is made that allKlebsiella bacteriocins have the same biochemical target, or more likely, possess a common transmission mechanism.  相似文献   

16.
17.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

18.
Summary Pediococcus acidilactici strains E, F and H isolated from fermented sausages produced bacteriocins which were protein in nature and inhibitory to a variety of spoilage and pathogenic microorganisms often encountered in foods. These strains harbored two to three plasmids ranging in size from 7.4 to 40.2 megadaltons. Curing experiments and plasmid profile analysis indicated the involvement of plasmid DNA with bacteriocin activity in all three strains. Carbohydrate fermentation and antibiotic resistance phenotypes did not appear to be associated with bacteriocin plasmids. Both bacteriocin activity and resistance determinants were linked in strain H and mediated by a 7.4-megadalton plasmid, whereas in strains E and F these two traits were not linked.  相似文献   

19.
Salmonella typhimurium LT2 lines, if phenotypically rough, are fully sensitive to bacteriocin 4-59, produced by Salmonella canastel strain SL1712. Bacteriocin-resistant mutants fell into three classes. Those resistant to phage ES18 and to albomycin proved to be mutants of class chr (equivalent to tonB of Escherichia coli); these mutants still adsorb the bacteriocin and so are classified as tolerant. Another class of (incompletely) tolerant mutants was resistant to phage PH51; their envelope fractions lacked the band corresponding to outer membrane protein 34K, known to serve for adsorption of phage PH51. A third class of mutants, which did not adsorb the bacteriocin, was unaltered in sensitivity to phages. Their envelopes lacked the 33K band, indicating absence of the outer membrane protein 33K, considered to correspond to outer membrane protein II* of E. coli, which in that species is determined at locus ompA (formerly tolG or con). Phage P22 HT105/1 cotransduced the 33K S. typhimurium gene (to be called ompA, to accord with E. coli usage) with pyrD+ at about 30% frequency when the donor allele was ompA+ or one ompA, but at only 3 to 11% when the donor allele was another ompA. When the donor carried either of two long deletions of the put (proline utilization) operon, phage P22 HT105/1 cotransduced put (and ompA+) with pyrD+ at low frequency. The cotransduction data indicate that ompA of S. typhimurium is located between pyrD and put, nearer the former. This corresponds to the map position of ompA in E. coli K-12.  相似文献   

20.
Multi- and pan-antibiotic-resistant bacteria area major health challenge in hospital settings. Furthermore,when susceptible bacteria establish surface-attached biofilm populations, they become recalcitrant to antimicrobial therapy. Therefore, there is a need for novel antimicrobials that are effective against multi-drug-resistant and surface-attached bacteria. A screen to identify prokaryote-derived antimicrobials from a panel of over 100 bacterial strains was performed. One compound isolated from Citrobacter freundii exhibited antimicrobial activity against a wide range of Gram-negative bacteria and was effective against biofilms. Random transposon mutagenesis was performed to find mutants unable to produce the antimicrobial compound.Transposons mapped to a bacteriocin gene located on a small plasmid capable of replication in Escherichia coli. The plasmid was sequenced and found to be highly similar to a previously described colicinogenic plasmid.Expression of the predicted bacteriocin immunity gene conferred bacteriocin immunity to E. coli. The predicted bacteriocin gene, colA-43864, expressed in E. coli was sufficient to generate anti-microbial activity, and purified recombinant ColA-43864 was highly effective in killing E. coli, Citrobacter species, and Klebsiella pneumoniae cells in a planktonic and biofilm state. This study suggests that bacteriocins can be an effective way to control surface-attached pathogenic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号