首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Absorbance difference spectra were recorded at 20 degrees C from 30 ns to milliseconds after photolysis of lauryl maltoside suspensions of artificial visual pigments derived from 9-cis isomers of 5-ethylretinal, 8,16-methanoretinal (a 6-s-trans-bicyclic analogue), or 5-demethyl-8-methylretinal. In all three pigments, the earliest intermediate that was detected had the characteristics of a mixture of bathorhodopsin and a blue-shifted intermediate, BSI, which is the first decay product of bathorhodopsin in bovine rhodopsin. The first decays resolved on the nanosecond time scale were the formation of the lumirhodopsin analogues. Subsequent decays were able to be fit with a mechanistic scheme which has been shown to apply to both membrane and detergent suspensions of rhodopsin. Large increases were seen in the amount of metarhodopsin I which appeared after photolysis of 5-ethylisorhodopsin and the bicyclic isorhodopsin analogue, while 5-demethyl-8-methylisorhodopsin more closely followed native rhodopsin in decaying through meta I380, a 380 nm absorbing precursor to metarhodopsin II. In addition to forming more metarhodopsin I, the bicyclic analogue stabilized the metarhodopsin I-metarhodopsin II equilibrium similarly to what has been previously reported for 9-demethylrhodopsin in detergent, introducing the possibility that the bicyclic analogue could similarly be defective in transducin activation. These observations support the idea that long after initial photolysis, structural details of the retinylidene chromophore continue to play a decisive role in processes leading to the activated form, metarhodopsin II.  相似文献   

2.
Early photolysis intermediates of native bovine rhodopsin (RHO) are investigated by nanosecond laser photolysis near physiological temperature. Absorption difference spectra are collected after excitation with 477-, 532-, and 560-nm laser pulses of various energies and with 477-nm laser excitation at 5, 12, 17, 21, and 32 degrees C. The data are analyzed by using singular-value decomposition (SVD) and a global exponential fitting routine. Two rate constants associated with distinct spectral changes are observed during the time normally associated with the decay of bathorhodopsin to lumirhodopsin. Various models consistent with this observation are considered. A sequential model in which there is a reversible step between a bathorhodopsin intermediate and a new intermediate (BSI), which is blue-shifted relative to lumirhodopsin, is shown to best fit the data. The temperature dependence of the observed and calculated rate constants leads to linear Arrhenius plots. Extrapolation of the temperature dependence suggests that BSI should not be observable after rhodopsin photolysis at temperatures below -100 degrees C. The results are discussed with regard to the artificial visual pigments cis-5,6-dihydroisorhodopsin and 13-demethylrhodopsin. It is proposed that the rate of the BATHO to BSI transition is limited by the relaxation of the strained all-trans-retinal chromophore within a tight protein environment. The transition to LUMI involves chromophore relaxation concurrent with protein relaxation. While the first process is strongly affected by changes in the chromophore, the second transition seems to be determined more by protein relaxation.  相似文献   

3.
The photolysis intermediates of an artificial bovine rhodopsin pigment, cis-5,6-dihydro-isorhodopsin (cis-5,6,-diH-ISORHO, lambda max 461 nm), which contains a cis-5,6-dihydro-9-cis-retinal chromophore, are investigated by room temperature, nanosecond laser photolysis, and low temperature irradiation studies. The observations are discussed both in terms of low temperature experiments of Yoshizawa and co-workers on trans-5,6-diH-ISORHO (Yoshizawa, T., Y. Shichida, and S. Matuoka. 1984. Vision Res. 24: 1455-1463), and in relation to the photolysis intermediates of native bovine rhodopsin (RHO). It is suggested that in 5,6-diH-ISORHO, a primary bathorhodopsin intermediate analogous to the bathorhodopsin intermediate (BATHO) of the native pigment, rapidly converts to a blue-shifted intermediate (BSI, lambda max 430 nm) which is not observed after photolysis of native rhodopsin. The analogs from lumirhodopsin (LUMI) to meta-II rhodopsin (META-II) are generated subsequent to BSI, similar to their generation from BATHO in the native pigment. It is proposed that the retinal chromophore in the bathorhodopsin stage of 5,6-diH-ISORHO is relieved of strain induced by the primary cis to trans isomerization by undergoing a geometrical rearrangement of the retinal. Such a rearrangement, which leads to BSI, would not take place so rapidly in the native pigment due to ring-protein interactions. In the native pigment, the strain in BATHO would be relieved only on a longer time scale, via a process with a rate determined by protein relaxation.  相似文献   

4.
The linear dichroism spectrum of rhodopsin in sonicated bovine disk membranes was measured 30, 60, 170, and 600 ns after room temperature photolysis with a linearly polarized, 7-ns laser pulse (lambda = 355 or 477 nm). A global exponential fitting procedure based on singular value decomposition was used to fit the linear dichroism data to two exponential processes which differed spectrally from one another and whose lifetimes were 42 +/- 7 ns and 225 +/- 40 ns. These results are interpreted in terms of a sequential model where bathorhodopsin (BATHO, lambda max = 543 nm) decays toward equilibrium with a blue shifted intermediate (BSI, lambda max = 478 nm). BSI then decays to lumirhodopsin (LUMI, lambda max = 492 nm). It has been suggested that two bathorhodopsins decay in parallel to their products. However, a Monte Carlo simulation of partial photolysis of solid-state visual pigment samples shows that one mechanism which creates populations of BATHO having different photolysis rates at 77 K may not be responsible for the two decay rates reported here at room temperature. The angle between the cis band and 498-nm band transition dipoles of rhodopsin is determined to be 38 degrees. The angles between both these transition dipoles and those of the long-wave-length bands of BATHO, BSI, and LUMI are also determined. It is shown that when BATHO is formed its transition dipole moves away from the original cis band transition dipole direction. The transition dipole then moves roughly twice as much towards the original cis band direction when BSI appears. Production of LUMI is associated with return of the transition dipole almost to the original orientation relative to the cis band, but with some displacement normal to the plane which contains the previous motions. The correlation between the lambda max of an intermediate and its transition dipole direction is discussed.  相似文献   

5.
Using frog rod outer segments, we measured changes of the absorption spectrum during the conversion of rhodopsin to a photosteady-state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (440 nm) at ? 190°C and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (718 nm) at ? 190°C. The reaction kinetics was expressed by one exponential in the former case and by two exponentials in the latter. These results suggest that rhodopsin is composed of a single molecular species, while bathorhodopsin is composed of two kinds of molecular species designated as batho1-rhodopsin and batho2-rhodopsin. On warming the two forms of bathorhodopsin, each bathorhodopsin converted to its own lumirhodopsin, metarhodopsin I and finally a free all-trans-retinal plus opsin. The absorption spectra of the two forms of bathorhodopsin, lumirhodopsin and metarhodopsin I were measured at ? 190°C. We infer that a rhodopsin molecule in the excited state relaxes to either batho1-rhodopsin or batho2-rhodopsin, and then converts to its own intermediates through one of the two parallel pathways.  相似文献   

6.
Lewis JW  Szundi I  Kazmi MA  Sakmar TP  Kliger DS 《Biochemistry》2004,43(39):12614-12621
The role of glutamic acid 181 in the bovine rhodopsin retinylidene chromophore pocket was studied by expressing E181 mutants in COS cells and measuring, as a function of time, the absorbance changes produced after excitation of lauryl maltoside pigment suspensions with 7 ns laser pulses. All mutants studied except E181D showed accelerated decay of bathorhodopsin compared to wild type. Even for E181D, an anomalously large blue shift was observed in the absorption spectrum of the bathorhodopsin decay product, BSI. These observations support the idea that E181 plays a significant role in the earliest stages of receptor activation. E181 mutations have a pronounced effect on the decay of the lumirhodopsin photointermediate, primarily affecting the size of the red shift that occurs in the lumirhodopsin I to lumirhodopsin II transition that takes place on the 10 micros time scale after wild-type photoexcitation. While the spectral change that occurs in the lumirhodopsin I to lumirhodopsin II transition in wild-type rhodopsin is very small ( approximately 2 nm), making it difficult to detect, it is larger in E181D ( approximately 6 nm), making it evident even in the lower signal-to-noise ratio measurements possible with rhodopsin mutants. The change seen is even larger for the E181F mutant where significant amounts of a deprotonated Schiff base intermediate are produced with the 10 micros time constant of lumirhodopsin II formation. The E181Q mutant shows lumirhodopsin decay more similar to wild-type behavior, and no lumirhodopsin I to lumirhodopsin II transition can be resolved. The addition of chloride ion to E181Q increases the lumirhodopsin I-lumirhodopsin II spectral shift and slows the deprotonation of the Schiff base. The latter result is consistent with the idea that a negative charge at position 181 contributes to protonated Schiff base stability in the later intermediates.  相似文献   

7.
Nanosecond time-resolved absorption measurements are reported for the room temperature photolysis of a modified rhodopsin pigment, 13-demethylrhodopsin, which contains the chromophore 13-demethylretinal. The measurements are consistent with the formation of an equilibrium between a BA-THO-13-demethylrhodopsin species and a blue-shifted species (relative to the parent pigment), BSI-13-demethylrhodopsin. The results are compared to those acquired after photolysis of native bovine rhodopsin [Hug, S. J., Lewis, J. W., Einterz, C. M., Thorgeirsson, T. E., & Kliger, D. S. (1990) Biochemistry (preceding paper in this issue)] and to results obtained after photolysis of several modified isorhodopsin pigments in which the BSI species was first observed. It is concluded that in all of the pigments the results are consistent with the formation of an equilibrium between BATHO and BSI, which subsequently decays on a nanosecond time scale at room temperature to a lumirhodopsin intermediate.  相似文献   

8.
Enthalpy changes (Delta H) of the photointermediates that appear in the photolysis of octopus rhodopsin were measured at physiological temperatures by the laser-induced transient grating method. The enthalpy from the initial state, rhodopsin, to bathorhodopsin, lumirhodopsin, mesorhodopsin, transient acid metarhodopsin, and acid metarhodopsin were 146 +/- 15 kJ/mol, 122 +/- 17 kJ/mol, 38 +/- 8 kJ/mol, 12 +/- 5 kJ/mol, and 12 +/- 5 kJ/mol, respectively. These values, except for lumirhodopsin, are similar to those obtained for the cryogenically trapped intermediate species by direct calorimetric measurements. However, the Delta H of lumirhodopsin at physiological temperatures is quite different from that at low temperature. The reaction volume changes of these processes were determined by the pulsed laser-induced photoacoustic method along with the above Delta H values. Initially, in the transformation between rhodopsin and bathorhodopsin, a large volume expansion of +32 +/- 3 ml/mol was obtained. The volume changes of the subsequent reaction steps were rather small. These results are compared with the structural changes of the chromophore, peptide backbone, and water molecules within the membrane helixes reported previously.  相似文献   

9.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

10.
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysis-rapid scan spectrophotometry near physiological temperature. The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin leads to mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodopsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

11.
Flash photolysis of rhodopsin in rabbit's retina has been analysed theoretically, and the results are found to be in good agreement with the experimental results of Hagins (1957). We have also obtained the variation of relative concentrations of rhodopsin, lumirhodopsin, isorhodopsin and metarhodopsin I during the period of the flash corresponding to two different intensities of the flash. It has been found that the quantum efficiencies of conversion of lumirhodopsin into rhodopsin and isorhodopsin will lie in the range 0.24–0.45 and 0.20–0.44 respectively; quantum efficiencies of conversion of metarhodopsin I into rhodopsin and isorhodopsin are found to have values greater than 0.52 and 0.45 respectively and the quantum efficiency of conversion of isorhodopsin into lumirhodopsin has been found to be approximately 0.865. Also the maximum value of the rate constant of the reaction metarhodopsin Imetarhodopsin II at 37 C has been determined in decerebrated eye and it has been found that it is of the same order as found by Pugh (1975) in the case of human eye.Work partially supported by Department of Science and Technology  相似文献   

12.
Motoyuki Tsuda 《BBA》1979,545(3):537-546
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysisrapid scan spectrophotometry near physiological temperature.The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin → mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodospsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

13.
Evidence is presented that lumirhodopsin (containing all-trans retinal) is not directly photoconverted to bathorhodopsin (all-trans) at 77 degrees K as previously suggested (Yoshizawa and Wald. 1963. Nature (Lond.) 197:1279-1286). Rather, lumirhodopsin is converted to a new species, L' (11-cis and/or 9-cis retinal) which, on warming to room temperature, is indistinguishable from rhodopsin or isorhodopsin. The quantum efficiency for the conversion of lumirhodopsin to L' is estimated to be 0.5 +/- 0.1. This value is significantly higher than that of other all-trans to cis conversions for bovine rhodopsin intermediates, indicating that the opsin conformation has a significant effect on a pigment's quantum efficiency.  相似文献   

14.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.  相似文献   

15.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

16.
Using the twisted conformations of the chromophores for visual pigments and intermediates which were theoretically determined in the previous paper, energy surfaces of the pigment at - 190 degrees C were obtained as functions of the torsional angles theta 9-10 and theta 11-12 or of the torsional angles theta 9-10 and theta 13-14. In these calculations, the existence of specific reaction paths between rhodopsin (R) and bathorhodopsin (B), between isorhodopsin I (I) and bathorhodopsin, and between isorhodopsin II (I') and bathorhodopsin were assumed. It was shown that the total energy surfaces of the excited states had minima C1 at theta 9-10 approximately -10 degrees and theta 11-12 approximately -80 degrees, C2 at theta 9-10 approximately -85 degrees and theta 11-12 approximately -5 degrees, and C3 at theta 9-10 approximately -0 degree and theta 13-14 approximately -90 degrees. These minima are considered to correspond to the thermally barrierless common states as denoted by Rosenfeld et al. Using the total energy surfaces in the ground and excited states, the molecular mechanism of the photoisomerization reaction was suggested. Quantum yields for the photoconversions among R, I, I' and B were related to the rates of vibrational relaxations, radiationless transitions and thermal excitations. Some discussion was made of the temperature effect on the quantum yield. Similar calculations of the energy surfaces were also made at other temperatures where lumirhodopsin or metarhodopsin I is stable. Relative energy levels of the pigments and the intermediates were discussed.  相似文献   

17.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.A part of this work was performed while one of the authors (T.K.) was a Visiting Investigator of Japan Society for the Promotion of Science at Kyoto University from April, 1977 to March, 1978  相似文献   

18.
The enthalpy changes associated with each of the major steps in the photoconversion of octopus rhodopsin have been measured by direct photocalorimetry. Formation of the primary photoproduct (bathorhodopsin) involves energy uptake of about 130 kJ/mol, corresponding to storage of over 50% of the exciting photon energy, and is comparable to the energy storage previously observed in bovine rhodopsin. Subsequent intermediates involve the step-wise dissipation of this energy to give the physiological end-product (acid metarhodopsin) at a level only slightly above the parent rhodopsin. No significant differences in energetics are observed between rhodopsin in microvilli membrane suspensions or detergent dispersions. Use of different buffer systems in the calorimetric experiments shows that conversion of rhodopsin to acid metarhodopsin involves no light-induced protonation change, whereas alkali metarhodopsin photoproduction occurs with the release of one proton per molecule and an additional enthalpy increase of about 50 kJ/mol. Van't Hoff analysis of the effect of temperature on the reversible metarhodopsin equilibrium gives an enthalpy for the acid alkali transition consistent with this calorimetric result, and the proton release is confirmed by direct observation of light-induced pH changes. Acid-base titration of metarhodopsin yields an apparent pK of 9.5 for this transition, though the pH profile deviates slightly from ideal titration behaviour. We suggest that a high energy primary photoproduct is an obligatory feature of efficient biological photodetectors, as opposed to photon energy transducers, and that the similarity at this stage between cephalopod and vertebrate rhodopsins represents either convergent evolution at the molecular level or strong conservation of a crucial functional characteristic.  相似文献   

19.
20.
M Nakagawa  S Kikkawa  T Iwasa    M Tsuda 《Biophysical journal》1997,72(5):2320-2328
Light-induced protein conformational changes in the photolysis of octopus rhodopsin were measured with a highly sensitive time-resolved transient UV absorption spectrophotometer with nanosecond time resolution. A negative band around 280 nm in the lumirhodopsin minus rhodopsin spectra suggests that alteration of the environment of some of the tryptophan residues has taken place before the formation of lumirhodopsin. A small recovery of the absorbance at 280 nm was observed in the transformation of lumirhodopsin to mesorhodopsin. Kinetic parameters suggest that major conformational changes have taken place in the transformation of mesorhodopsin to acid metarhodopsin. In this transformation, drastic changes of amplitude and a shift of a difference absorption band around 280 nm take place, which suggest that some of the tryptophan residues of rhodopsin become exposed to a hydrophilic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号