首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Conlan S  Zhang Y  Cheley S  Bayley H 《Biochemistry》2000,39(39):11845-11854
A recombinant form of the porin OmpG, OmpGm, lacking the signal sequence, has been expressed in Escherichia coli. After purification under denaturing conditions, the protein was refolded in the detergent Genapol X-080, where it gained a structure rich in beta sheet as evidenced by a CD spectrum similar to that of the native form. Electrophoretic analysis and limited proteolysis experiments suggested that refolded OmpGm exists in at least three forms. Nevertheless, the recombinant protein formed uniform channels in planar bilayers with a conductance of 0.81 nS (1 M NaCl, pH 7.5). Previous biochemical studies had suggested that OmpG is a monomeric porin, rather than the usual trimer. Bilayer recordings substantiated this proposal; voltage-induced closures occurred consistently in a single step, and channel block by Gd(3+) lacked the cooperativity seen with the trimeric porin OmpF. The availability of milligram amounts of a monomeric porin will be useful both for basic studies of porin function and for membrane protein engineering.  相似文献   

3.
From cyanobacteria to higher plants, photosynthetic membranes are composed of two galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), and two negatively charged lipids, sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). In many environments, plants and algae grow in a shortage of nutrients, leading to the development of nutrient-saving mechanisms. For example, at the cellular level, in phosphate starvation, these mechanisms include conversion of phospholipids into phosphorus-free lipids. In photosynthetic membranes, PG is supposed to be replaced by SQDG in phosphate starvation whereas the opposite occurs in sulfur deprivation. All biological data confirm a complementary relationship between SQDG and PG and suggest the importance of maintaining the total amount of anionic lipids in photosynthetic membranes. Using neutron diffraction on reconstituted SQDG or PG lipid membranes, we demonstrate that, despite chemically different headgroups, PG and SQDG have similar physicochemical properties. With an equivalent diacylglycerol backbone, PG and SQDG membranes have a similar bilayer thickness and bending rigidity. They also have essentially the same response to hydration in terms of repulsion and interaction forces. The results presented here establish that SQDG and PG are good substitutes to each other in nutrient starvation conditions to maintain the chloroplast functional organization and its photosynthesis activity.  相似文献   

4.
The bovine placenta produces a wide variety of proteins that are structurally and functionally similar to the pituitary proteins from the GH/PRL gene family. Bovine placental lactogen (bPL) is a 200-amino acid long glycoprotein hormone that exhibits both lactogenic and somatogenic properties. The apparent molecular masses of purified native (n) bPL molecules (31-33 kDa) exceed 23 041 Da, which is the theoretical molecular mass of the protein core. At least six isoelectric variants (pI: 4.85-6.3) of bPL were described in cotyledonary extracts and three different bPL isoforms (pI: 4.85-5.25) were found in fetal sera. The bPL molecules that are detected in higher concentrations in peripheral circulation exhibit a more acidic pI than those present in placental homogenates. This may reflect an important glycosylation process occurring just prior to the bPL secretion. The bPL mRNA is transcribed in trophectoderm binucleate cells starting from Day 30 of pregnancy until the end of gestation. In mothers, bPL is involved in the regulation of ovarian function, mammogenesis, lactogenesis, and pregnancy stage-dependent adaptation of nutrient supplies to the fetus. Due to the higher fetal, compared to maternal concentrations of circulating hormone, it has been suggested that bPL primarily targets fetal tissues.  相似文献   

5.
6.
A recombinant protein termed CLS, which corresponds to the C-terminal portion of human L-selectin and contains its entire transmembrane and cytoplasmic domains (residues Ser473-Arg542), has been produced and its oligomeric state in detergents characterized. CLS migrates in the SDS polyacrylamide gel at a pace that is typically expected from a complex twice of its molecular weight. Additional studies revealed, however, that this is due to residues in the cytoplasmic domain, as mutations in this region or its deletion significantly increased the electrophoretic rate of CLS. Analytical ultracentrifugation and fluorescence resonance energy transfer studies indicated that CLS reconstituted in dodecylphosphocholine detergent micelles is monomeric. When the transmembrane domain of L-selectin is inserted into the inner membrane of Escherichia coli as a part of a chimeric protein in the TOXCAT assay, little oligomerization of the chimeric protein is observed. Overall, these results suggest that transmembrane and cytoplasmic domains of L-selectin lack the propensity to self-associate in membranes, in contrast to the previously documented dimerization of the transmembrane domain of closely related P-selectin. This study will provide constraints for future investigations on the interaction of L-selectin and its associating proteins.  相似文献   

7.
Mapacalcine is a small homodimeric protein of 19 kDa with 9 disulfide bridges extracted from the Cliona vastifica sponge (Red Sea). It selectively blocks a calcium current insensitive to most calcium blockers. Specific receptors for mapacalcine have been described in a variety of tissues such as brain, smooth muscle, liver, and kidney. Previous works achieved on hepatocytes and nervous cells demonstrated that this protein selectively blocks a calcium influx triggered by an ischemia/reperfusion (I/R) shock and efficiently protects cells from death after I/R. The aim of this work was to produce the recombinant mapacalcine in the yeast Pichia pastoris. Mass spectrometry, light scattering analysis and biological characterization demonstrated that the recombinant mapacalcine obtained was a monomeric form with 4 disulfide bridges which retains the biological activity of the natural protein.  相似文献   

8.
Latent and active p53 are identical in conformation   总被引:6,自引:0,他引:6  
  相似文献   

9.
Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so.  相似文献   

10.
Preparation and polymerization properties of monomeric ADP-actin   总被引:2,自引:0,他引:2  
An improved method for the preparation of Mg-ADP-actin and Ca-ADP-actin which minimizes denaturation of the protein has been developed. Using ADP-actin prepared by this method, we have measured the polymerization characteristics of Mg-ADP-actin and Ca-ADP-actin. In contrast to the significant difference in Mg-ATP-actin and Ca-ATP-actin polymerization characteristics that we reported previously (J. Muscle Res. Cell Motility 7 (1986) 215-224), we show here that values for the critical concentration, the relative rate constant of elongation (mk+) and the relative rate constant of depolymerization (mk-) for Mg-ADP-actin are similar to those for Ca-ADP-actin. The value of mk+ for Mg-ATP-actin is about 8-fold higher than that for Mg-ADP-actin and the value of mk- for Mg-ADP-actin is 3-4-fold higher than that for Mg-ATP-actin. These factors may help explain the observation that the spontaneous nucleation rates of both types of ADP-actin are low in contrast to the rapid nucleation of Mg-ATP-actin.  相似文献   

11.
12.
Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in Escherichia coli, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a Kd for vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.  相似文献   

13.
14.
Extremophiles - Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses...  相似文献   

15.
Phospholamban is an integral membrane protein that regulates the contractility of cardiac muscle by maintaining cardiomyocyte calcium homeostasis. Abnormalities in association of protein kinase A with PLB have recently been linked to human heart failure, where a single mutation is responsible for dilated cardiomyopathy. To date, a high-resolution structure of phospholamban in a lipid environment has been elusive. Here, we describe the first structure of recombinant, monomeric, biologically active phospholamban in lipid-mimicking dodecylphosphocholine micelles as determined by multidimensional NMR experiments. The overall structure of phospholamban is "L-shaped" with the hydrophobic domain approximately perpendicular to the cytoplasmic portion. This is in agreement with our previously published solid-state NMR data. In addition, there are two striking discrepancies between our structure and those reported previously for synthetic phospholamban in organic solvents: a), in our structure, the orientation of the cytoplasmic helix is consistent with the amphipathic nature of these residues; and b), within the hydrophobic helix, residues are positioned on two discrete faces of the helix as consistent with their functional roles ascribed by mutagenesis. This topology renders the two phosphorylation sites, Ser-16 and Thr-17, more accessible to kinases.  相似文献   

16.
An alkylated monomer of Concanavalin A was prepared photochemically according to the method of Tanaka et al. (1981). Its affinities for methyl--d-gluco, methyl--d-manno and p-nitro-phenyl--d-manno pryranoside were calculated. The enthalpies of these binding reactions were measured calorimetrically and the thermodynamic parameters were calculated. The values obatined suggest that the structure of the monomer differs from that of the dimeric and tetrameric molecules.Calorimetric studies also showed that the monomeric derivative reacts with IgM but not IgG. The enthalpy per binding site in the monomer-IgM reaction is equal to that of the monomer-mannose derivative reaction; mannose is the terminal residue of the saccharide chains of the IgM molecule. The stoichiometry of the reaction is ten ConA-m per IgM molecule.  相似文献   

17.
18.
B M Cohen  G S Zubenko 《Life sciences》1985,37(15):1403-1409
Fluorescence spectroscopy was used to examine the biophysical characteristics of human platelet membranes as a function of subject age. The structural order of membrane lipid domains was determined with the use of 1,6-diphenyl-1,3,5-hexatriene (DPH), a fluorescent probe that preferentially localizes in the hydrocarbon core of synthetic and biological membranes. Over the age range of subjects examined (17 to 86 years) the structural order of platelet membranes, as reflected by the steady-state fluorescence polarization of DPH, increased substantially. The magnitude of the observed increase in membrane structural order is sufficient to affect membrane-related cell functions including platelet aggregation. A major contributor to the increase in structural order of platelet membranes may have been an increase in the concentration of cholesterol in serum and tissue with age. The changes observed here in platelet membranes may be a general phenomenon of aging, as changes of similar type and magnitude have been observed in lymphocyte membranes and brain with age in other studies.  相似文献   

19.
Wu WT  Lyu SR  Hsieh WH 《Cryobiology》2005,51(3):330-338
In order to successfully cryopreserve articular cartilage chondrocytes, it is important to characterize their osmotic response during the cryopreservation process, as the ice forms and the solutes concentrate. In this study, experimental work was undertaken to determine the osmotic parameters of articular cartilage chondrocytes. The osmotically inactive volume of articular cartilage chondrocytes was determined to be 44% of the isotonic volume. The membrane hydraulic conductivity parameters for water were determined by fitting a theoretical water transport model to the experimentally obtained volumetric shrinkage data; the membrane hydraulic conductivity parameter L(Pg) was found to be 0.0633 microm/min/atm, and the activation energy E, 8.23 kcal/mol. The simulated cooling process, using the osmotic parameters obtained in this study, suggests a cooling rate of 80 degrees C/min for the cryopreservation of the articular cartilage chondrocytes of hogs. The data obtained in this study could serve as a starting point for those interested in cryopreservation of chondrocytes from articular cartilage in other species in which there is clinical interest and there are no parameters for prediction of responses.  相似文献   

20.
Nine neuropeptides isolated from Drosophila melanogaster and five neuropeptides, previously isolated from the CNS of Limulus with antisera to FMRFamide-related peptides, were tested for their effects on the myogenic heart of Drosophila melanogaster. Of the native peptides, TDVDHVFLRF-NH(2) (Dromyosuppressin), DPKQDFMRFamide, and PDNFMRFamide significantly slowed the heart. Of the Limulus peptides, DEGHKMLYFamide (LP1) increased heart rate significantly, GHSLLHFamide (LP2) and PDHHMMYFamide (LP3) decreased the heart's rate, while DHGNMLYFamide (LP4) and GGRSPSLRLRFamide (LP5) had no effect at the concentrations we employed. Dromyosuppressin, DPKQDFMRFamide, and PDNFMRFamide from Drosophila, and LP2 and LP3 from Limulus, which belong to a novel group of peptides structurally unrelated to FMRFamide, are among only a very few substances from within the general group of neuropeptides and neurohormones known to slow the heart of Drosophila, and as such offer an important tool for investigating the molecular mechanisms underlying the control of the pacemaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号