首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helix stabilizing nucleoid protein HSNP-C' from the thermophilic archaeon Sulfolobus acidocaldarius has been characterized with respect to its interactions with nucleic acids by gel retardation assay, affinities to immobilized matrices, electron microscopy, and fluorescence titration. The amino acids implicated in the DNA binding site of the protein have been shown by selectively modifying specific amino acyl functional groups and looking at their effects on the DNA binding properties of the protein. Lysine, arginine, tryptophan, and tyrosine residues of the protein HSNP-C' were modified with pyridoxal-5-phosphate; 2,3-butanedione; BNPS-skatole; and tetranitromethane, respectively. The modification of residues was assessed according to standard procedures. The effect of the chemical modification on the function of the protein HSNP-C' with respect to DNA protein interactions was studied and the results indicate the definite involvement of tyrosines and also the significant involvement of the flanking tryptophan residues in the DNA binding domain on the protein.  相似文献   

2.
DNA polymerase has been purified about 25,000-fold from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. On SDS-PAGE the enzyme was observed to have a molecular weight of 100 kDa and to be about 90% pure. The native molecular weight was 108 kDa indicating that the enzyme is composed of a single polypeptide. Activity gel analysis showed an active polypeptide of about 100 kDa. Under conditions promoting proteolysis this polypeptide was degraded to a slightly smaller form of 98 kDa. The enzyme has been characterized in respect to optimal assay conditions, template specificity, sensitivity to inhibitors and associated nuclease activities. The high temperature optimum of 65 degrees C should be emphasized. No substantial similarities have been found with other prokaryotic and eukaryotic DNA polymerases, although the enzyme bears certain resemblances to prokaryotic non-replicative polymerases.  相似文献   

3.
We have purified to near homogeneity a DNA polymerase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Sodium dodecyl sulfate gel electrophoresis of the purified enzyme revealed a polypeptide of 100 kDa. On the basis of a Stokes radius of 4.2 nm and a sedimentation coefficient of 6 S, the purified enzyme has an estimated molecular mass of 109 kDa. These results are consistent with the enzyme being a monomer of 100 kDa. In addition a polyclonal antiserum, obtained by injection of the electroeluted 100-kDa polypeptide into a rabbit, specifically neutralized the DNA-polymerase activity. The enzyme is sensitive to both N-ethylmaleimide and 2',3'-dideoxyribosylthymine triphosphate and resistant to aphidicolin. The purified DNA polymerase has neither exonuclease nor primase activities. In our in vitro conditions, the enzyme is thermostable up to 80 degrees C and is active between 55 degrees C and 85 degrees C in the presence of activated calf-thymus DNA.  相似文献   

4.
DNA of acidothermophilic archaebacterium Sulfolobus acidocaldarius has a base composition of about 40 mol% G + C content. A low intracellular salt concentration has been inferred for this organism. These features and the high optimal temperature of growth (75°C) would have a destabilising effect on the helical structure of the intracellular DNA. Hence, the nucleoid of this organism has been isolated in order to analyse its proteins composition and to identify any protein factors responsible for stabilisation of the organism's DNA at its growth temperature. The acid-soluble fraction of the nucleoid contains four low-molecular-weight basic proteins. The four proteins have been purified to homogeneity and antibodies to these proteins have been raised in rabbits. Immunodiffusion results suggest that the proteins are antigenically distinct. Three proteins (A, C and C′) stabilise different double-stranded DNA during thermal denaturation and increase Tm of DNA by about 25 C°. These proteins are referred to as helix-stabilising nucleoid proteins (HSNP). Protein B (referred to a DNA-binding nucleoid protein, DBNP-B) does not show helix-stabilising effect. None of the four proteins stabilises double-stranded RNA. The four proteins bind to native and denatured DNA to different extents as measured by DNA-cellulose chromatography and [3H]DNA binding by filtration. We suggest, based on the DNA binding, histone-like and helix-stabilising properties, that the intracellular function of these proteins is to prevent strand separation of DNA at the optimal temperature of growth (75°C).  相似文献   

5.
The first archaeal aconitase was isolated from the cytosol of the thermoacidophilic Sulfolobus acidocaldarius. Interestingly, the enzyme was copurified with an isocitrate lyase. This enzyme, directly converting isocitrate, the reaction product of the aconitase reaction, was also unknown in crenarchaeota, thus far. Both proteins could only be separated by SDS gel electrophoresis yielding apparent molecular masses of 96 kDa for the aconitase and 46 kDa for the isocitrate lyase. Despite of its high oxygen sensitivity, the aconitase could be enriched 27-fold to a specific activity of approximately 55 micromol x min(-1) x mg(-1), based on the direct aconitase assay system. Maximal enzyme activities were measured at pH 7.4 and the temperature optimum for the archaeal enzyme was recorded at 75 degrees C, slightly under the growth optimum of S. acidocaldarius around 80 degrees C. Thermal inactivation studies of the aconitase revealed the enzymatic activity to be uninfluenced after one hour incubation at 80 degrees C. Even at 95 degrees C, a half-life of approximately 14 min was determined, clearly defining it as a thermostable protein. The apparent K(m) values for the three substrates cis-aconitate, citrate and isocitrate were found as 108 microM, 2.9 mM and 370 microM, respectively. The aconitase reaction was inhibited by the typical inhibitors fluorocitrate, trans-aconitate and tricarballylate. Amino-acid sequencing of three internal peptides of the S. acidocaldarius aconitase revealed the presence of highly conserved residues in the archaeal enzyme. By amino-acid sequence alignments, the S. acidocaldarius sequence was found to be highly homologous to either other putative archaeal or known eukaryal and bacterial sequences. As shown by EPR-spectroscopy, the enzyme hosts an interconvertible [3Fe--4S] cluster.  相似文献   

6.
A heat-stable esterase has been purified 1080-fold to electrophoretic homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium; 20% of the starting activity is recovered. The purified enzyme shows a specific activity of 158 units/mg, based on the hydrolysis of p-nitrophenyl acetate. The esterase hydrolyses short-chain p-nitrophenyl esters, aliphatic esters and triacylglycerols. It is strongly inhibited by paraoxon and phenylmethanesulphonyl fluoride, but only weakly by eserine. From sedimentation-equilibrium data and molecular sieving in polyacrylamide gels, the Mr of the esterase is estimated to be 117000-128000. SDS/polyacrylamide-gel electrophoresis reveals a single band of protein, of Mr 32000. The purified esterase crystallizes in the presence of poly(ethylene glycol) in short rods. The enzyme is inactivated only on prolonged storage at temperature above 90 degrees C.  相似文献   

7.
DNA-protein complexes formed in vitro with isolated DNA-binding proteins from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius were analyzed by electron microscopy. Two of the proteins (10a and 10b) formed specific structures after incubation with DNA. Protein 10a, at low protein concentrations, showed individual small spots on the DNA and at high concentrations evenly covered doublestranded DNA. Protein 10b showed three different types of regular structures: one with single-stranded and two with double-stranded DNA. Using double-stranded DNA, 10b first bound cooperatively to two strands forming long, plait-like structures only slightly shorter than respective free DNA. The complex consists of two right-handed, interwound fibers, with a helical pitch of 26 nm and a diameter of ~10-11 nm. At higher protein concentration than needed to package all DNA into the complex with two double-stranded DNAs, the two DNAs were separated again and a new structure was formed evenly covering only one DNA strand. Both structures showed no significant contraction of the length of the DNA covered in the complex. Nucleoprotein formed with single-stranded ΦX174 DNA had a diameter of ~11 nm and could form circles with a contour length of 0.5 μm.  相似文献   

8.
A modified procedure for extraction and purification of hydrolyzed archaebacterial lipids is described. Lipids were extracted from Sulfolobus acidocaldarius using a Soxhlet extraction procedure followed by trichloroacetic acid solvent-extraction of the residue. The yield of total extractable material by this protocol was 14% which, after a two-phase wash, yielded 10% lipid. Modifications to the published steps for purifying the subsequently hydrolyzed lipids were developed to purify glycerol dialkyl nonitol tetraether (GDNT). The nearly colorless final macrocyclic product was characterized by TLC, IR, NMR, and mass spectrometry.  相似文献   

9.
M Becker  G Sch?fer 《FEBS letters》1991,291(2):331-335
For the first time the purification of a heme-b containing cytochrome from the plasma membrane of an extremely thermoacidophilic archaebacterium is described. The detergent solubilized 30 kDa polypeptide contains two heme-b centers and one copper ion. According to its low temperature spectra and CO-binding properties, it is likely to function as a cytochrome-o like terminal oxidase in the membrane. The purified cytochrome does not retain catalytic activity, however.  相似文献   

10.
A modified procedure for the purification of soluble ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius is described. In addition to (alpha) 65 and (beta) 51 kDa polypeptides, further subunits gamma * (20 kDa) and delta * (12 kDa) are demonstrated to be components of the enzyme, exhibiting a total molecular mass of 380 kDa. Molecular electron microscopic images of the native enzyme indicate a quaternary structure probably formed by the gamma *, delta *-complex as a central mass surrounded by a pseudohexagon of the peripherally arranged larger alpha and beta subunits. As can be derived from both molecular mass and electron microscopy data, the archaebacterial Sulfolobus-ATPase emerges to exist as an alpha 3 beta 3-quaternary structure with respect to the larger subunits. This is normally found in typical F1-ATPases of eubacterial and eukaryotic organisms. Therefore it is postulated that F1- and F0F1-ATPases, respectively, can occur ubiquitously in all urkingdoms of organisms as functional units of energy-transducing membranes.  相似文献   

11.
The stereoselective transfer of hydrogen from NADH to oxaloacetate catalysed by malate dehydrogenases (EC 1.1.1.37) from the thermoacidophilic archaebacteria Sulfolobus acidocaldarius and Thermoplasma acidophilum was studied by the p.m.r. method described by Zhou & Wong [(1981) J. Biochem. Biophys. Methods 4, 329-338]. Both enzymes are A-side (pro-R) stereospecific for NADH.  相似文献   

12.
The shape of the chromosomal DNA of the sulfur-dependent archaebacterium Sulfolobus acidocaldarius was analyzed by the pulsed-field gel electrophoresis(PFGE). S.acidocaldarius DNA digested with Notl showed two DNA bands at around 1.0 Mbp and 2.1 Mbp. Notl-linking clones were isolated from the library of S.acidocaldarius chromosomal DNA. It contained two Notl sites. Both 1.0 and 2.1 Mbp DNA band separated by PFGE were hybridized with the two independent Notl-linking fragment. Each right and left arms of two Notl-linking fragments were hybridized with one of the two DNA bands separated by PFGE. The results indicated that the chromosomal DNA of S.acidocaldarius is circular.  相似文献   

13.
Glycogen-bound polyphosphate kinase has been isolated from a crude extract of Sulfolobus acidocaldarius by isopycnic centrifugation in CsCl. Divalent cations (Mn2+ greater than Mg2+) stimulated the reaction. The enzyme does not require the presence of histones for its activity; it is inhibited strongly by phosphate and slightly by fluoride. The protein from the glycogen complex migrated in a sodium dodecyl sulfate-polyacrylamide gel as a 57-kilodalton protein band; after isoelectric focusing it separated into several spots in the pH range of 5.6 to 6.7.  相似文献   

14.
A topoisomerase, able to relax negatively supercoiled DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. Relaxation was fully efficient in vitro between 70 degrees C and 80 degrees C and was dependent on the presence of ATP and magnesium ions. The enzyme did not exhibit gyrase-like activity and was poorly sensitive to gyrase inhibitors. These properties are reminiscent of eukaryotic type II topoisomerases. However, the enzyme was unable to relax positively supercoiled DNA. This thermophilic enzyme may be used in a variety of ways to study the structure and stability of DNA at high temperature.  相似文献   

15.
16.
Thermostable acid phosphatase (APase) from thermoacidophilic archaeon Sulfolobus acidocaldarius was isolated, partially purified, and characterized. The optimum pH and temperature of the enzyme for p-nitrophenylphosphate (pNPP) as a substrate were 5.0 and 70°C, respectively. The apparent K m value was 1.9 mM. This APase showed a native molecular mass of 20 kDa on a gel filtration chromatography. Of the APase activity, 60% remained after 60 min of heat treatment at 75°C. To confirm whether the APase is active in the monomeric form, we attempted to elute the enzyme from SDS-polyacrylamide gels with Disk electrophoresis apparatus and renature the enzyme. The APase activity was recovered up to 50% in the 14- to 35-kDa range, and maximum around 25 kDa. These results suggest that this APase is monomeric protein. Received: 8 July 1999 / Accepted: 9 August 1999  相似文献   

17.
An NADH dehydrogenase was purified to electrophoretical homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium optimally growing at pH 2-3 and 75 degrees C. A 2,100-fold purification was achieved. The purified enzyme is an acidic protein with an isoelectric point of 5.6 and a molecular weight of 95,000, consisting of two 50,000-dalton subunits. The enzyme showed an absorption spectrum characteristic of flavoproteins, with maxima at 272, 372, and 448 nm. The enzyme is highly thermostable, is specific for NADH as an electron donor, and is capable of using 2,6-dichlorophenolindophenol, ferricyanide, benzoquinone, and naphthoquinone as electron acceptors. Though at a low rate, caldariellaquinone, a unique and sole benzothiophenequinone in the genus Sulfolobus, was also reduced by the enzyme, suggesting that the enzyme is a possible member of the respiratory chain of the thermoacidophilic archaebacterium.  相似文献   

18.
The activity of a homogeneous DNA polymerase from the thermophilic archaebacterium, Sulfolobus acidocaldarius, on a singly primed, single-stranded recombinant phage M13 DNA has been examined. At the optimal temperature (70 to 75 degrees C) this template is efficiently replicated in ten minutes using a ratio of enzyme molecule to primed-template of 0.8. Analysis of DNA products during the course of polymerization shows that species of quite homogeneous size are observed and that the number of primers extended by the enzyme is constant, whatever the enzyme molecule to primed template ratio is in the range 1/50 to 2, indicating that the 100 x 10(3) Mr DNA polymerase from S. acidocaldarius is randomly recycled on the template molecules. At non-optimal temperature (60 degrees C and 80 degrees C) the distribution of products observed indicated the presence of arrest sequences; some have been shown to be reversible. One of these pausing signals detected at 80 degrees C has been further analysed, and has been found to be DNA sequence-dependent.  相似文献   

19.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DMA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both n  相似文献   

20.
Membranes of Sulfolobus acidocaldarius, an extreme thermophilic archaebacterium, are composed of unusual bipolar lipids. They consist of macrocyclic tetraethers with two polar heads linked by two hydrophobic C40 phytanyl chains which are thought to be arranged as a monolayer in the cytoplasmic membrane. Fractionation of a total lipid-extract from S. acidocaldarius yielded a lipid fraction which forms closed and stable unilamellar liposomes in aqueous media. Beef heart cytochrome c-oxidase could be functionally reconstituted in these liposomes. In the presence of reduced cytochrome c, a protonmotive force (delta p) across the liposomal membrane was generated of up to -92 mV. Upon fusion of these proteoliposomes with membrane vesicles of Lactococcus lactis, the delta p generated by cytochrome c-oxidase activity was capable to drive uphill transport of leucine. Electron microscopic analysis indicated that the tetraether lipids form a single monolayer liposome. The results demonstrate that tetraether lipids of archaebacteria can form a suitable matrix for the function of exogenous membrane proteins originating from a regular lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号