首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of conditioned medium (CM) obtained from cultures of oestrogen-receptor positive breast cancer MCF7 cell line on the differentiation, proliferation and apoptosis patterns of cultured breast fibroblasts from normal interstitial and malignant stromal tissue. Fibroblasts were grown in the presence or absence of CM and examined for the differentiation pattern by immunofluorescence and Western blotting procedures, for proliferation profile by Ki67 expression, and for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling technique. Monoclonal antibodies specific for non-muscle (NM), smooth muscle (SM) lineage and differentiation markers were applied to these cultures. CM is able to induce a SM-like differentiation in interstitial fibroblasts, i.e., essentially myofibroblast formation. Fibroblasts from tumour stroma showed the presence of a small number of smooth muscle cells (SMC) along with a large number of myofibroblasts. Treatment of these cultures with CM was unable to change this pattern. Only normal fibroblasts were responsive to the proliferation/apoptotic-inhibitory effect of the CM. These data suggest that structural and functional differences exist between stromal fibroblasts from normal breast and breast cancer with respect to the responsiveness to soluble factors present in the CM. We hypothesize that the lack of in vitro sensitivity to CM shown by 'tumour' fibroblasts is the result of an in vivo inherent and stable phenotypic change on the fibroblasts surrounding breast tumour cells occurring via a paracrine mechanism.  相似文献   

2.
Myofibroblasts were successfully grown in tissue culture from the connective tissue stroma of three human breast adenocarcinomas. These cells had slower growth kinetics than fibroblasts from normal human dermis, as did myofibroblasts from two granulating wounds. Electron microscopy of breast cancer slices and tissue cultures of these specimens confirmed the presence of myofibroblasts in both. In early passages, the specificity of carcinoma-derived myofibroblast growth kinetics is preserved. The exact role of myofibroblasts in breast cancer, whether helping or hindering tumor growth, remains undetermined.  相似文献   

3.
Summary Myofibroblasts from human breast carcinomas were identified and experimentally generated in culture, and a possible function was examined. The frequency ofα-smooth muscle actin immunoreactive cells was evaluated as a measure of myofibroblast differentiation in primary culture. Few or noα-smooth muscle actin-positive stromal cells (6.1 ± 8.4%) were identified in primary cultures from normal breast tissue (n=9). In contrast, high frequencies (68.8 ± 15.1%) were observed in primary cultures from carcinomas (n=19). The frequencies of myofibroblasts in primary cultures were almost identical to those obtained in the corresponding cryostat sections (69.1 vs. 68.8%). A possible precursor cell to the myofibroblast was looked for among typical fibroblasts and vascular smooth muscle cells. Purified blood vessels containing both fibroblasts and vascular smooth muscle cells were embedded in collagen gel and incubated with medium conditioned by breast epithelial cells. Fibroblasts rather than smooth muscle cells were recruited from the blood vessels. In medium conditioned by carcinoma cell lines or in co-cultures of carcinoma cell lines and purified fibroblasts,α-smooth muscle actin and the typical myofibroblast phenotype were induced in otherwiseα-smooth muscle actin-negative fibroblasts. The effect of myofibroblasts on cellular movement—essential to neoplastic cells—was analyzed. Spontaneous motility of tumor cells (MCF-7) was entirely suppressed in a collagen gel assay. Under these conditions tumor cell motility was selectively mediated by direct cell-to-cell interaction between tumor cells and myofibroblasts. Under chemically defined conditions, interaction was dependent on the presence of plasminogen. Anti-plasminogen, soybean trypsin inhibitor, and anti-fibronectin partly neutralized the effect of plasminogen. It is concluded that elements of myofibroblast differentiation and function may be studied in culture.  相似文献   

4.
Carcinomas are complex tissues comprised of neoplastic cells and a non-cancerous compartment referred to as the 'stroma'. The stroma consists of extracellular matrix (ECM) and a variety of mesenchymal cells, including fibroblasts, myofibroblasts, endothelial cells, pericytes and leukocytes (1-3). The tumour-associated stroma is responsive to substantial paracrine signals released by neighbouring carcinoma cells. During the disease process, the stroma often becomes populated by carcinoma-associated fibroblasts (CAFs) including large numbers of myofibroblasts. These cells have previously been extracted from many different types of human carcinomas for their in vitro culture. A subpopulation of CAFs is distinguishable through their up-regulation of α-smooth muscle actin (α-SMA) expression(4,5). These cells are a hallmark of 'activated fibroblasts' that share similar properties with myofibroblasts commonly observed in injured and fibrotic tissues (6). The presence of this myofibroblastic CAF subset is highly related to high-grade malignancies and associated with poor prognoses in patients. Many laboratories, including our own, have shown that CAFs, when injected with carcinoma cells into immunodeficient mice, are capable of substantially promoting tumourigenesis (7-10). CAFs prepared from carcinoma patients, however, frequently undergo senescence during propagation in culture limiting the extensiveness of their use throughout ongoing experimentation. To overcome this difficulty, we developed a novel technique to experimentally generate immortalised human mammary CAF cell lines (exp-CAFs) from human mammary fibroblasts, using a coimplantation breast tumour xenograft model. In order to generate exp-CAFs, parental human mammary fibroblasts, obtained from the reduction mammoplasty tissue, were first immortalised with hTERT, the catalytic subunit of the telomerase holoenzyme, and engineered to express GFP and a puromycin resistance gene. These cells were coimplanted with MCF-7 human breast carcinoma cells expressing an activated ras oncogene (MCF-7-ras cells) into a mouse xenograft. After a period of incubation in vivo, the initially injected human mammary fibroblasts were extracted from the tumour xenografts on the basis of their puromycin resistance (11). We observed that the resident human mammary fibroblasts have differentiated, adopting a myofibroblastic phenotype and acquired tumour-promoting properties during the course of tumour progression. Importantly, these cells, defined as exp-CAFs, closely mimic the tumour-promoting myofibroblastic phenotype of CAFs isolated from breast carcinomas dissected from patients. Our tumour xenograft-derived exp-CAFs therefore provide an effective model to study the biology of CAFs in human breast carcinomas. The described protocol may also be extended for generating and characterising various CAF populations derived from other types of human carcinomas.  相似文献   

5.
Following injury, tissue repair process takes place involving inflammation, granulation tissue formation and scar constitution. Granulation tissue develops from the connective tissue surrounding the damaged area and contains vessels, inflammatory cells, fibroblasts and myofibroblasts. Myofibroblasts play an important role in many tissue injuries and fibrocontractive diseases. The process of normal wound repair after tissue injury follows a closely regulated sequence including the activation and the proliferation of fibroblastic cells. In pathological situations, the normal resolution stages are abrogated and the proliferation of myofibroblasts continues, inducing excessive accumulation of extracellular matrix. The differentiation of fibroblastic cells into myofibroblasts is an early event in the development of tissue fibrosis. Myofibroblastic cells express smooth muscle cytoskeletal markers (alpha-smooth muscle actin in particular) and participate actively in the production of extracellular matrix. The evaluation of myofibroblast differentiation in renal biopsies would be useful for histopathologists to appreciate the intensity of tissue injury and particularly to predict the long term outcome of some nephropathies. Immunohistochemical studies for alpha-smooth muscle actin should be made systematically in renal tissue biopsies. Myofibroblastic differentiation appears to play a significant role in the progression of renal failure and seems to be a useful marker of progressive disease.  相似文献   

6.
In an attempt to identify the growth factors or cytokines involved in the serosal thickening that occurs in rabbit bladder subjected to partial outflow obstruction, the following growth factors – transforming growth factor β1, platelet-derived growth factor, epidermal growth factor, granulocyte colony-stimulating factor and granulocyte–monocyte colony-stimulating factor – were delivered separately onto the serosal surface of the intact bladder via osmotic minipumps. The proliferative/differentiative cellular response of the rabbit bladder wall was evaluated by bromodeoxyuridine incorporation and immunofluorescence staining with a panel of monoclonal antibodies to cytoskeletal proteins (desmin, vimentin, keratins 8 and 18 and non-muscle myosin) and to smooth muscle (α-actin, myosin and SM22) proteins. Administration of the transforming growth factor, but not of the other growth factors/cytokines, was effective in inducing serosal thickening. Accumulating cells in this tissue were identified as myofibroblasts, i.e. cells showing a mixed fibroblast–smooth muscle cell differentiation profile. The phenotypic pattern of myofibroblasts changed in a time-dependent manner: 21 days after the growth factor delivery, small bundles of smooth muscle cells were found admixed with myofibroblasts, as occurs in the obstructed bladder. These ‘ectopic’ muscle structures displayed a variable proliferating activity and expressed an immature smooth muscle cell phenotype. The complete cellular conversion to smooth muscle cells was not achieved if transforming growth factor β1 was delivered to fibroblasts of subcutaneous tissue. These findings suggest a tissue-specific role for this growth factor in the cellular conversion from myofibroblast to smooth muscle cells. © 1998 Chapman & Hall  相似文献   

7.
Cultured myofibroblasts are characterized by stress fibers, containing alpha-smooth muscle actin (alpha-SMA) and by supermature focal adhesions (FAs), which are larger than FAs of alpha-SMA-negative fibroblasts. We have investigated the role of alpha-SMA for myofibroblast adhesion and FA maturation. Inverted centrifugation reveals two phases of initial myofibroblast attachment: during the first 2 h of plating microfilament bundles contain essentially cytoplasmic actin and myofibroblast adhesion is similar to that of alpha-SMA-negative fibroblasts. Then, myofibroblasts incorporate alpha-SMA in stress fibers, develop mature FAs and their adhesion capacity is significantly increased. When alpha-SMA expression is induced in 5 d culture by TGFbeta or low serum levels, fibroblast adhesion is further increased correlating with a "supermaturation" of FAs. Treatment of myofibroblasts with alpha-SMA fusion peptide (SMA-FP), which inhibits alpha-SMA-mediated contractile activity, reduces their adhesion to the level of alpha-SMA negative fibroblasts. With the use of flexible micropatterned substrates and EGFP-constructs we show that SMA-FP application leads to a decrease of myofibroblast contraction, shortly followed by disassembly of paxillin- and beta3 integrin-containing FAs; alpha5 integrin distribution is not affected. FRAP of beta3 integrin-EGFP demonstrates an increase of FA protein turnover following SMA-FP treatment. We conclude that the formation and stability of supermature FAs depends on a high alpha-SMA-mediated contractile activity of myofibroblast stress fibers.  相似文献   

8.

Background

Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion.

Principal Findings

Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells.

Conclusions

Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.  相似文献   

9.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

10.
The aromatase complex has a key role in regulating oestrogen formation in normal and malignant breast tissues. Using dexamethasone-treated fibroblasts, derived from breast tumours, breast tumour cytosol and breast tumour-derived conditioned medium (CM) markedly stimulate aromatase activity. The cytokine, interleukin-6 (IL-6) has been identified as a factor present in CM which is capable of stimulating aromatase activity. To examine whether IL-6 may have a role in vivo in regulating breast tissue aromatase activity, IL-6 production and aromatase activity in breast tumour and adipose tissue from breast quadrants were examined. In 5/6 breasts examined so far, aromatase activity was highest in adipose tissue in the breast quadrant containing the tumour or on which the tumour impinged. There was a significant correlation (P < 0.05, Kendall's rank correlation) between IL-6 production and aromatase activity in these breast tissues. It is concluded that IL-6 may have an important role in regulating aromatase activity in breast tissues.  相似文献   

11.
Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD)-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.  相似文献   

12.
Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young's modulus of the substrate was reduced from ~32 kPa, mimicking pre-calcified diseased tissue, to ~7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing hydrogel substrates with physiologically relevant stiffness to dynamically redirect cell fate in vitro.  相似文献   

13.
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.  相似文献   

14.
It is suggested that tumour stromal myofibroblasts exert an unfavourable effect on the biology of breast cancer. We are aware of only a single study which examined relationships between manifestation of myofibroblasts in the stroma of breast cancer and clinicopathological data of the patients. The present study was aimed at estimation of the effect exerted by myofibroblasts present in the tumour stroma on principal pathological parameters and on expression of Ki67, P53 and HER-2 proteins in the group of the most frequent breast cancers, the ductal cancers. In paraffin sections of 60 ductal breast cancers (20 cases in G1, 20 in G2 and 20 in G3), immunohistochemical reactions were performed to detect expression of smooth muscle actin (SMA) in order to visualize myofibroblasts, Ki67, P53 and HER-2. The studies demonstrated that the most numerous myofibroblasts were present in G3 cases and they were the least frequent in G1 cases (P = 0.02). Positive correlations were observed between the presence of myofibroblasts in tumour stroma and expression of Ki67 and HER-2 in breast cancer cells in the entire group (P < 0.001 and P = 0.001, respectively), in G2 cases (P = 0.003 and P = 0.03) and in G3 cases (P = 0.01 and P = 0.03). Considering that the higher grade, Ki67 and HER-2 are thought to represent unfavourable prognostic factors, the elevated content of myofibroblasts in tumour stroma is probably typical for cases with worse prognosis.  相似文献   

15.
The cooperation between epithelial and mesenchymal cells is essential for embryonic development and probably plays an important role in pathological phenomena such as wound healing and tumor progression. It is well known that many epithelial tumors are characterized by the local accumulation of connective tissue cells and extracellular material; this phenomenon has been called the stroma reaction. One of the cellular components of the stroma reaction is the myofibroblast, a modulated fibroblast which has acquired the capacity to neoexpress alpha-smooth muscle actin, the actin isoform typical of vascular smooth muscle cells, and to synthesize important amounts of collagen and other extracellular matrix components. It is now well accepted that the myofibroblast is a key cell for the connective tissue remodeling which takes place during wound healing and fibrosis development. Myofibroblasts are capable of remodeling connective tissue but also interact with epithelial cells and other connective tissue cells and may thus control such phenomena as tumor invasion and angiogenesis. In this review we discuss the mechanisms of myofibroblast evolution during fibrotic and malignant conditions and the interaction of myofibroblasts with other cells in order to control tumor progression. On this basis we suggest that the myofibroblast may represent a new important target of antitumor therapy.  相似文献   

16.
Fibroblasts migrate into and repopulate connective tissue wounds. At the wound edge, fibroblasts differentiate into myofibroblasts, and they promote wound closure. Regulated fibroblast-to-myofibroblast differentiation is critical for regenerative healing. Previous studies have focused on the role in fibroblasts of urokinase plasmingen activator/urokinase plasmingen activator receptor (uPA/uPAR), an extracellular protease system that promotes matrix remodeling, growth factor activation, and cell migration. Whereas fibroblasts have substantial uPA activity and uPAR expression, we discovered that cultured myofibroblasts eventually lost cell surface uPA/uPAR. This led us to investigate the relevance of uPA/uPAR activity to myofibroblast differentiation. We found that fibroblasts expressed increased amounts of full-length cell surface uPAR (D1D2D3) compared with myofibroblasts, which had reduced expression of D1D2D3 but increased expression of the truncated form of uPAR (D2D3) on their cell surface. Retaining full-length uPAR was found to be essential for regulating myofibroblast differentiation, because 1) protease inhibitors that prevented uPAR cleavage also prevented myofibroblast differentiation, and 2) overexpression of cDNA for a noncleavable form of uPAR inhibited myofibroblast differentiation. These data support a novel hypothesis that maintaining full-length uPAR on the cell surface regulates the fibroblast to myofibroblast transition and that down-regulation of uPAR is necessary for myofibroblast differentiation.  相似文献   

17.
Myofibroblasts express alpha-smooth muscle actin and have a phenotype intermediate between fibroblasts and smooth muscle cells. Their emergence can be induced by cytokines such as transforming growth factor beta; but the regulatory mechanism for induction of alpha-smooth muscle actin gene expression in myofibroblast differentiation has not been determined. To examine this mechanism at the level of the alpha-smooth muscle actin promoter, rat lung fibroblasts were transfected with varying lengths of the alpha-smooth muscle actin promoter linked to the chloramphenicol acetyl transferase reporter gene and treated with transforming growth factor beta1. The results show that the shortest inducible promoter was 150 base pairs long, suggesting the presence in this region of cis-elements of potential importance in transforming growth factor beta1 induced myofibroblast differentiation. Transfection of "decoy" oligonucleotides corresponding to sequences for four suspected regulatory factors demonstrated that only the transforming growth factor beta control element is involved in the regulation of transforming growth factor beta1-induced alpha-smooth muscle actin expression in myofibroblast differentiation. Consistent with this conclusion is the finding that a mutation in the transforming growth factor beta control element caused a significant reduction in promoter activity. These observations taken together show that alpha-smooth muscle actin promoter regulation during myofibroblast differentiation is uniquely different from that in smooth muscle cells and other cell lines. Since myofibroblasts play a key role in wound contraction and synthesis of extracellular matrix, clarification of this differentiation mechanism should provide new insight into fibrogenesis and suggest future novel strategies for modulation of wound healing and controlling fibrosis.  相似文献   

18.
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.  相似文献   

19.
In an attempt to identify the growth factors or cytokines involved in the serosal thickening that occurs in rabbit bladder subjected to partial outflow obstruction, the following growth factors – transforming growth factor 1, platelet-derived growth factor, epidermal growth factor, granulocyte colony-stimulating factor and granulocyte–monocyte colony-stimulating factor – were delivered separately onto the serosal surface of the intact bladder via osmotic minipumps. The proliferative/differentiative cellular response of the rabbit bladder wall was evaluated by bromodeoxyuridine incorporation and immunofluorescence staining with a panel of monoclonal antibodies to cytoskeletal proteins (desmin, vimentin, keratins 8 and 18 and non-muscle myosin) and to smooth muscle (-actin, myosin and SM22) proteins. Administration of the transforming growth factor, but not of the other growth factors/cytokines, was effective in inducing serosal thickening. Accumulating cells in this tissue were identified as myofibroblasts, i.e. cells showing a mixed fibroblast–smooth muscle cell differentiation profile. The phenotypic pattern of myofibroblasts changed in a time-dependent manner: 21 days after the growth factor delivery, small bundles of smooth muscle cells were found admixed with myofibroblasts, as occurs in the obstructed bladder. These ectopic muscle structures displayed a variable proliferating activity and expressed an immature smooth muscle cell phenotype. The complete cellular conversion to smooth muscle cells was not achieved if transforming growth factor 1 was delivered to fibroblasts of subcutaneous tissue. These findings suggest a tissue-specific role for this growth factor in the cellular conversion from myofibroblast to smooth muscle cells. © 1998 Chapman & Hall  相似文献   

20.
Myofibroblasts. I. Paracrine cells important in health and disease   总被引:12,自引:0,他引:12  
Myofibroblasts are aunique group of smooth-muscle-like fibroblasts that have a similarappearance and function regardless of their tissue of residence.Through the secretion of inflammatory and anti-inflammatory cytokines,chemokines, growth factors, both lipid and gaseous inflammatorymediators, as well as extracellular matrix proteins and proteases, theyplay an important role in organogenesis and oncogenesis, inflammation,repair, and fibrosis in most organs and tissues. Platelet-derivedgrowth factor (PDGF) and stem cell factor are two secreted proteinsresponsible for differentiating myofibroblasts from embryological stemcells. These and other growth factors cause proliferation ofmyofibroblasts, and myofibroblast secretion of extracellular matrix(ECM) molecules and various cytokines and growth factors causesmobility, proliferation, and differentiation of epithelial orparenchymal cells. Repeated cycles of injury and repair lead to organor tissue fibrosis through secretion of ECM by the myofibroblasts.Transforming growth factor- and the PDGF family of growth factorsare the key factors in the fibrotic response. Because of theirubiquitous presence in all tissues, myofibroblasts play important rolesin various organ diseases and perhaps in multisystem diseases as well.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号