首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A basic question in insect–plant interactions is whether the insects respond to, or regulate plant traits, or a complex mixture of the two. The relative importance of the directions of the influence in insect–plant interactions has therefore been articulated through both the plant vigor hypothesis (PVH) and the resource regulation hypothesis (RRH). This study tested the applicability of these hypotheses in explaining the interactions between Parthenium hysterophorus L. (Asteraceae) and its stem‐galling moth, Epiblema strenuana Walker (Lepidoptera: Tortricidae). Parthenium plants exposed to galling were sampled at three sites in north Queensland, Australia, over a 2‐year period, and the relationship between gall abundance and plant vigor (plant height, biomass, flowers per plant, and branches per plant) was studied. To test the predictions of PVH and RRH, the vigor of parthenium plants protected from galling using insecticides was compared to galled plants and plants that escaped from galling. The vigor of ungalled plants was less than the vigor of galled plants. The higher plant vigor in galled plants was not due to galling, as was evident from insecticide exclusion trials. The insect seemed to preferentially gall the more vigorous plants. These findings support the predictions of the PVH and are contrary to those of RRH. Since gall abundance is linked to plant vigor, galling may have only a limited impact on the vigor of parthenium. This has implications for weed biological control. If the objective of biological control is to regulate the population of a plant by a galling insect, a preference for more vigorous plants by the insect is likely to limit its ability to regulate plant populations. This may explain the paucity of successes against biocontrol of annual weeds using gall insects.  相似文献   

2.
The plant stress hypothesis suggests that some herbivores favour stressed plants, whereas the plant vigour hypothesis proposes that other herbivores prefer vigorous plants. The effects of a prior stress, that of frost damage, were examined on the subsequent growth of Eucalyptus globulus globulus and on the response of insect herbivores. Frost damage affected tree growth by reducing new leaf area and increasing specific leaf area (SLA). However, herbivore abundance was not affected by prior frost damage. Two feeding trials using Anoplognathus chloropyrus and Hyalarcta huebneri and a morphometric study of Ctenarytaina eucalypti were conducted to assess the performance of herbivores on trees that had suffered more or less frost damage. Consumption by A. chloropyrus and H. huebneri was unaffected by foliage origin (damaged versus healthy). Hyalarcta huebneri grew faster when fed leaves from previously damaged trees, and C. eucalypti from previously damaged trees were larger than those from healthy trees. Enhanced insect performance on frost damaged plants may have resulted from the high specific leaf area (most likely thinner) leaves. The herbivore abundance data did not support the hypothesis that previously frost damaged plants are preferred by insects. However, increased growth of H. huebneri and larger body size of C. eucalypti on damaged trees indicates that previously stressed trees may produce leaves of higher nutritional value.  相似文献   

3.
Abstract.The effects of water stress on phloem sap quality of the melon, Cucumis melo, and how this, in turn, has an impact on the sweet potato whitefly, Bemisia tabaci were studied. Melon plants were grown under watering regimes that produced plants with or without water stress. Plants showed strong developmental responses to the treatments; water-stressed plants were shorter, with fewer, smaller leaves than those without stress. There was, however, no effect of plant water stress on the development period of whiteflies feeding on these plants, or on the weights of male or female adults. Honeydew production was used as an indirect measure to test whether the absence of insect developmental or behavioural effects was due to differential phloem sap ingestion. Feeding rates on the stressed plants were almost half those on unstressed plants, and there was also variation in the daily pattern of honeydew production. Phloem sap and honeydew were analysed to determine why the feeding behaviours differed. Amino acid composition of the phloem sap was similar in both groups of plants, but carbohydrate concentrations were greater in water-stressed plants, indicating that lower feeding rates may have been due either to the physical or nutritional quality of the phloem sap. The honeydew of insects that were feeding on water-stressed plants contained a greater concentration of carbohydrate than those on unstressed plants, and was composed of a significantly greater proportion of glucose and the disaccharide, trehalulose. This isomerization of more complex sugars from those in the diet suggests that B. tabaci uses a mechanism of osmoregulation to actively maintain its internal water status. It is concluded that transient conditions of water stress in this host plant do not affect the development of B. tabaci, due to physiological and behavioural changes in response to diets with different nutritional and physical properties. The implications of this finding for the feeding biology of B. tabaci on desert-grown crops are discussed.  相似文献   

4.
The esterase enzymes are a major component of insect detoxification systems and play a crucial role in hydrolyzing lots of xenobiotic compounds. Among insect, generalist herbivores can exhibit developed biochemical defences as a result of exposing to a wide range of plant chemical compounds. To overcome this ability, host plants may affect the level of hydrolases in herbivore insects feeding on. To examine this hypothesis, in the present study total esterase activity was investigated in a highly polyphagous whitefly, Bemisia tabaci, reared on six different varieties of cotton, Gossypium hirsutum. Results showed significant differences in esterase activity of B. tabaci feeding on the host plant varieties. The highest esterase activities were detected in whiteflies feeding on Sk-Tb and Siokra varieties, whereas those whiteflies that feed on Hopicala variety exhibited the least esterase activities. Our findings highlight the important role of host plants in detoxification ability of herbivore insects. The importance of these findings in biology of insect pests and their applications in integrated pest management programmes of B. tabaci have been discussed in detail.  相似文献   

5.
The development of herbivore insects is influenced by the quality of their host plants. Elevated CO2 alters plant metabolism, which may change the nutritional quality of the plant, modifying the life history and feeding behaviour of herbivore insects. Understanding how insect pests respond to increasing CO2 concentration is essential for predicting the impact of the pest on food security. In this study, we investigated the effects of elevated CO2 (eCO2) on the life history and feeding behaviour of the MEAM1 species of Bemisia tabaci on a Bt soybean cultivar. We found that eCO2 increased the egg to adult development time and reduced the reproductive responses (fecundity and fertility) of B. tabaci. The whitefly B. tabaci that fed on the soybean plants grown under eCO2 conditions was negatively influenced by several traits related to the host plant resistance, such as the time spent on phloem sap ingestion. Furthermore, we evaluated the changes in the C:N concentration and plant morphology of the Bt plants. The biomass (weight of leaves and stems) of the Bt soybean plants grown under eCO2 conditions was significantly increased, and the elevated C:N ratio in the phenological stage V6 (i.e. when the plants had six trifoliate leaves developed) was the most pronounced difference in the Bt soybean plants subjected to eCO2 treatment. Taken together, our results indicate that Bt plants cultivated under eCO2 inhibit B. tabaci feeding, which can reduce whitefly infestations of the soybean fields.  相似文献   

6.
7.
The well documented biochemical profile of Brassicaceae, oligophagy of the herbivore Plutella xylostella (L.) (Lepidoptera: Plutellidae), and host specialization of the parasitoid Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) provide an ideal system for investigating tritrophic interactions mediated by nutritional quality of plants. We evaluated the bottom-up effects of five soil fertility regimes on nutritional quality of canola (Brassica napus L.) and then on several fitness correlates of female and male D. insulare as mediated through P. xylostella. Variation in soil fertility influenced the nutritional quality of host plants and this in turn affected the performance of D. insulare. In general, D. insulare performed best on plants grown with 3.0 g fertilizer pot−1; these plants had 2.06-, 3.77-, and 1.02-fold more nitrogen, phosphorous and potassium, respectively than ones grown without any added fertilizer. P. xylostella escape from D. insulare was highest (32%) on plants grown at 1.0 g fertilizer, and this could be attributed to both physical and physiological defense mechanisms mediated by host plant nutritional quality. Plant stress and plant vigor are competing paradigms pertaining to the performance of herbivorous insects on their host plants. These hypotheses were originally proposed to predict responses of herbivores, but may also explain the effects of plant quality on koinobiont parasitoids, such as D. insulare.  相似文献   

8.
Summary Herbivory can alter the balance between sources and sinks within a plant, and changes in the source-sink ratio often lead to changes in plant photosynthetic rates. We investigated how feeding by three insect herbivores affected photosynthetic rates and growth of goldenrod (Solidago altissima). One, a phloem-sap feeding aphid (Uroleucon caligatum), creates an additional sink, and the other two, a leaf-chewing beetle (Trirhabda sp.) and a xylem-sap feeding spittlebug (Philaenus spumarius) both reduce source supply by decreasing leaf area. Plants were grown outside in large pots and insects were placed on them at predetermined densities, with undamaged plants included as controls. All insects were removed after a 12-day feeding period. We measured photosynthetic rates both of damaged leaves and of undamaged leaves that were produced after insect removal. Photosynthetic rates per unit area of damaged leaves were reduced by spittlebug feeding, but not by beetle or aphid feeding. Conductance of spittlebugdamaged leaves did not differ from controls, but internal carbon dioxide concentrations were increased. These results indicate that spittlebug feeding does not cause stomatal closure, but impairs fixation within the leaf. Effects of spittlebug feeding on photosynthetic rates persisted after the insects were removed from the plants. Photosynthetic rates per unit area of leaves produced after insect removal on spittlegug-damaged plants were lower than control levels, even though the measurements were taken 12 days after insect removal. The measurement leaf on spittlebugdamaged plants was reduced in area by 27% relative to the controls, but specific leaf area (leaf area/leaf weight) was increased by 18%. Because of the shift in specific leaf area, photosynthetic rates were also examined per unit leaf weight, and when this was done there were no significant differences between control and spittlebug-damaged plants. Beetle and aphid feeding had no effects on the photosynthetic rate of the leaves produced after insect removal. Plant relative growth rates (in terms of height) were reduced by spittlebugs during the period that the insects were feeding on the plants. Relative growth rates of spittlebug-damaged plants were increased above control levels after insect removal, but these plants were still shorter than controls 17 days after insect removal. Beetles and aphids did not affect plant relative growth rates or plant height. Feeding by both spittlebugs and beetles reduced leaf area, and the effect of the spittlebug was more severe than that of the beetle. These results show that effects of herbivory on photosynthetic rates cannot be predicted simply by considering changes in the source-sink ratio, and that spittlebug feeding is more damaging to the host plant than beetle or aphid feeding.  相似文献   

9.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

10.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

11.
12.
The plant stress and plant vigor hypotheses (PVH) are two of the most widely recognized hypothesis invoked to explain differential distribution of insect herbivores among their host plants. In both cases, the emphasis is on bottom–up processes (i.e. host-plant quality), but a recent meta-analytical review of the literature has shown that the plant stress hypothesis might have limited support among insect herbivores. In this study, we conducted a meta-analysis of the effects of plant vigor on insect herbivore abundance and survivorship by reviewing 71 published articles that explicitly tested the PVH and enabled 161 independent comparisons. Z-transform was used as the metric to standardize the results of all independent comparisons. Our quantitative results have shown that Hymenoptera (sawflies) was the most abundant group in the reviewed studies, representing 28.1% of the independent comparisons, followed by Diptera (25.1%) and Homoptera (22.6%). Amongst all the guilds studied, gall-formers were the most representative group (68.0%), whereas leaf-miners and stem-borers were underrepresented (less than 4.0% of the available comparisons). Insect herbivores were significantly more abundant on more vigorous plants (E++=0.6432, CI=0.7558–0.7280), but no significant effect was detected on herbivore survivorship. When herbivores were categorized into feeding guilds, effects of plant vigor on herbivore abundance were stronger for sap-suckers, leaf-miners and gall-formers. Our results have shown a strong herbivore preference for more vigorous plants, although our results do not support a preference–performance linkage.  相似文献   

13.
There are gaps in our understanding of plant responses under different insect phytophagy modes and their subsequent effects on the insect herbivores’ performance at late season. Here we compared different types of insect feeding by an aphid, Lipaphis erysimi, and a lepidopteran, Plutella xylostella, and how this affected defensive metabolites in leaves of 2 Brassica species when plants gain maturity. Thiocyanate concentrations after P. xylostella and L. erysimi feeding activities were the same. Total phenolics was higher after the phloem feeder feeding than the folivore activity. The plants compensatory responses (i.e., tolerance) to L. erysimi feeding was significantly higher than the responses to P. xylostella. This study showed that L. erysimi had higher carbon than P. xylostella whereas nitrogen in P. xylostella was 1.42 times that in L. erysimi. Population size of the phloem feeder was not affected by plant species or insect coexistence. However, there was no correlation between plant defensive metabolites and both insects’ population size and biomass. This suggests that plant root biomass and tolerance index after different insect herbivory modes are not necessarily unidirectional. Importantly, the interaction between the folivore and the phloem feeder insects is asymmetric and the phloem feeder might be a trickier problem for plants than the folivore. Moreover, as both plants’ common and special defenses decreased under interspecific interference, we suggest that specialist insect herbivores can be more challenged in ecosystems in which plants are not involved in interspecific interference.  相似文献   

14.
Our laboratory found that silverleaf whitefly (SLW; Bemisia argentifolii Bellows & Perring) feeding alters host plant physiology and chemistry. The SLW induces a number of host plant defenses, including pathogenesis-related (PR) protein accumulation (e.g., chitinases, beta-1,3-glucanases, peroxidases, chitosanases, etc.). Induction of the PR proteins by SLW feeding occurs in various plant species and varieties. The extent and type of induction is dependent on a number of factors that include host plant growing conditions, the length of time the host plant is exposed to SLW feeding, the plant variety, and SLW population densities. The appearance of PR proteins correlates well with reduced infestations of conspecific insect herbivore competitors. Greenhouse and field experiments in which herbivore competitors (cabbage looper, Trichoplusia ni; leaf miner, Liromyza trifolii) were placed on plants previously exposed to SLW feeding demonstrated behavioral differences (oviposition, feeding preferences) and reduced survival rates and development times of these insects. The interaction was asymmetrical, i.e., SLW infestations of plants previously exposed to leaf miners had little or no effect on SLW behavior (oviposition). Induction of plant-defensive proteins by SLW feeding was both local (at the feeding site) and systemic (uninfested leaves distant to the feeding site). There are interactions between diseases such as tomato mottle virus (ToMoV; a geminivirus) and the host plant and SLW. PR proteins were induced in tomato plants infected with ToMoV much as they were via non-viruliferous SLW feeding. The presence of ToMoV in tomato plants significantly increased the number of eggs produced by SLW females. Experiments using tomato plants, powdery mildew (PM), and tobacco mosaic virus (TMV) show that whitefly infestations can affect plant pathogen relationships but the effects vary among pathogen types. Enzyme analyses prior to pathogen inoculation showed that whitefly treatment significantly increased the activities of foliar chitinase and peroxidase. Evaluation of pathogen growth 3 weeks after inoculation showed that whitefly feeding significantly reduced the incidence of PM. However, TMV levels evaluated by ELISA were not significantly affected by whitefly feeding. Six weeks after inoculation with pathogens, the chitinase and peroxidase activities were still elevated in plants initially fed on by whiteflies but continuing pathogen infection had no effect on these enzymes. The possibility that geminivirus infection and/or SLW infestations isolate the host plant for the selected reproduction of the virus and the insect is discussed. Multitrophic cascade effects may contribute to the successful eruptive appearance of SLW on various crops, ranking them as a major pest. They may explain the general observation that when SLW infest a host plant there are few if any competing insect herbivores and pathogens found in the host. However, the results indicate that certain SLW-virus relationships could be mutualistic.  相似文献   

15.
Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut [Cocos nucifera L. (Arecaceae)] has very few chewing‐type leaf feeding insect pests and was tested for feeding suitability against two generalist leaf feeding caterpillar species, corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J.E. Smith) (both Lepidoptera: Noctuidae). Feeding on leaf tissues from the most recently expanded leaves of a coconut variety caused significant mortality and reduced growth rates (as indicated by survivor weights) of S. frugiperda and H. zea compared to when they fed on leaves from a typical host, maize [Zea mays L. (Poaceae)], or the standard artificial diet. Proteins or other polymers did not appear to be responsible for the bioactivity noted against the caterpillars. Components responsible for activity were acetone extractable and separable by thin layer chromatography. Extracts from multiple areas of the thin layer chromatography (TLC) plates caused significant reductions in growth rates of S. frugiperda. The most bioactive TLC‐separated component, identified as pheophytin a, caused oxidative browning of test diets, suggesting that cytotoxicity of reactive oxygen species is a likely mode of action against H. zea and S. frugiperda.  相似文献   

16.
Gange AC  Eschen R  Wearn JA  Thawer A  Sutton BC 《Oecologia》2012,168(4):1023-1031
Foliar endophytic fungi appear to be ubiquitous in nature, occurring in a very wide range of herbaceous plants. However, their ecological role within forbs is very poorly known and interactions with foliar-feeding insects virtually unexplored. In this study, leaves of Cirsium arvense were infected with different combinations of endophyte fungi that had been previously isolated from this plant species. Two months later, leaf material was fed to larvae of a generalist insect, Mamestra brassicae, and adults of a specialist feeder, Cassida rubiginosa. Endophytes had different effects on the two insects; one species, Chaetomium cochliodes, reduced growth of M. brassicae but increased feeding by C. rubiginosa. Another species, Cladosporium cladosporioides, increased beetle feeding also, but had no effect on M. brassicae. Interactions were also seen between fungal species and dual infection with C. cladosporioides and Trichoderma viride greatly reduced beetle feeding. It is concluded that endophytes have significant effects on foliar feeding insects that differ with degree of specialism of the herbivore. We suggest that these effects are due to chemical changes in the host, brought about by fungal infection. These fungi have received remarkably little attention in the study of insect–plant interactions and yet could be important determinants of insect growth and even population dynamics.  相似文献   

17.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

18.
Neotyphodium coenophialum, an endophytic fungus that infects shoots of tall fescue (Festuca arundinacea), may protect its host from herbivory through production of alkaloids. Yet, the fungus can also modify plant resource allocation, regrowth dynamics, and drought tolerance, and these changes may also influence herbivores. We tested if N. coenophialum infection interacted with stress (drought or simulated herbivory) to modify plant resistance to insects. We assigned greenhouse plants to one of four treatments: 1) clipping at 3 cm above the soil surface, 2) drought stress during insect bioassays, 3) drought stress prior to insect bioassays, or 4) daily watering. Treatments were crossed with presence or absence of endophyte to give eight treatment combinations, and we assessed the performance of bird cherry‐oat aphid (Rhopalosiphum padi) and fall armyworm (Spodoptera frugiperda) feeding on plants in two separate experiments from each of the eight treatments. Aphids were placed into clip bags on leaf blades and allowed to reproduce parthenogenetically. Plant tissue was fed to third instar fall armyworm caterpillars until they molted into the fifth instar. Developmental time was recorded and larval growth was obtained gravimetrically. We also assessed total protein nitrogen (N) and loline alkaloids in plants.
Total protein N was unaffected by endophyte infection. In contrast, stress influenced total protein N, but its effect varied with endophyte infection. Uninfected plants that were clipped had higher total protein N; this trend was absent in infected plants. Plants in drought stress had lower N, but only if they were infected. Lolines were nearly absent from uninfected plants. In infected plants they tended to be higher in clipped plants. The effect of endophyte infection differed between the two insects: aphid reproduction was reduced by the endophyte, but endophyte infection enhanced caterpillar performance. Both insects were affected by interactions between the endophyte and stress. Aphids were negatively affected by drought stress, but only when feeding on uninfected plants, while caterpillars showed the opposite response, displaying lower performance on drought stressed plants only if they were infected. Aphids reproduced faster on regrowth tissue (following damage by clipping) of uninfected plants, but endophyte infection cancelled this effect. In contrast, performance of caterpillars was not influenced by an interaction between damage and infection. We conclude that N. coenophialum does not provide universal resistance to insects. Endophyte‐mediated resistance varies with insect species and will be a complex function of environmental stress, including drought and prior damage.  相似文献   

19.
Increased frequency and severity of drought, as a result of climate change, is expected to drive critical changes in plant–insect interactions that may elevate rates of tree mortality. The mechanisms that link water stress in plants to insect performance are not well understood. Here, we build on previous reviews and develop a framework that incorporates the severity and longevity of drought and captures the plant physiological adjustments that follow moderate and severe drought. Using this framework, we investigate in greater depth how insect performance responds to increasing drought severity for: (i) different feeding guilds; (ii) flush feeders and senescence feeders; (iii) specialist and generalist insect herbivores; and (iv) temperate versus tropical forest communities. We outline how intermittent and moderate drought can result in increases of carbon‐based and nitrogen‐based chemical defences, whereas long and severe drought events can result in decreases in plant secondary defence compounds. We predict that different herbivore feeding guilds will show different but predictable responses to drought events, with most feeding guilds being negatively affected by water stress, with the exception of wood borers and bark beetles during severe drought and sap‐sucking insects and leaf miners during moderate and intermittent drought. Time of feeding and host specificity are important considerations. Some insects, regardless of feeding guild, prefer to feed on younger tissues from leaf flush, whereas others are adapted to feed on senescing tissues of severely stressed trees. We argue that moderate water stress could benefit specialist insect herbivores, while generalists might prefer severe drought conditions. Current evidence suggests that insect outbreaks are shorter and more spatially restricted in tropical than in temperate forests. We suggest that future research on the impact of drought on insect communities should include (i) assessing how drought‐induced changes in various plant traits, such as secondary compound concentrations and leaf water potential, affect herbivores; (ii) food web implications for other insects and those that feed on them; and (iii) interactions between the effects on insects of increasing drought and other forms of environmental change including rising temperatures and CO2 levels. There is a need for larger, temperate and tropical forest‐scale drought experiments to look at herbivorous insect responses and their role in tree death.  相似文献   

20.
Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feeding. They are also inhibitors of conversion of plant material into insect body mass during or after consumption. Growth of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae), larvae was correspondingly greater on calcium oxalate‐defective (cod) mutants of M. truncatula with lower levels of crystal accumulation. Data presented here show that insects feeding on M. truncatula leaves with calcium oxalate crystals experience greater negative effects on growth and mandible wear than those feeding on artificial diet amended with smaller amorphous crystals from commercial preparations. Commercial calcium oxalate can be added to insect artificial diet at levels up to 7.5‐fold higher than levels found in wild‐type M. truncatula leaves with minimal effect on insect growth or lepidopteran mandibles. These data suggest that negative impacts of calcium oxalate in the diet of larvae are due to physical factors, and not toxicity of the compound, as high levels of the commercial crystals are readily tolerated. In contrast to the dramatic physical effects that M. truncatula‐derived crystals have on insect mandibles, we could detect no damage to insect peritrophic gut membranes due to consumption of these crystals. Taken together, the data indicate that the size and shape of prismatic M. truncatula oxalate crystals are important factors in determining effects on insect growth. If manipulation of calcium oxalate is to be used in developing improved insect resistance in plants, then our findings suggest that controlling not only the overall amount, but also the size and shape of crystals, could be valuable traits in selecting desirable plant lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号