首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously showed that the known HLA-B27-restricted influenza A epitope identified from human studies, NP.383-391, was recognized by CTLs following influenza A infection of transgenic (Tg) HLA-B27/H2 class I-deficient (H2 DKO) mice. Here, we examined the kinetics of the primary NP.383-391-specific response in Tg HLA-B27/H2 DKO mice at the site of respiratory infection, along with the profile of additional influenza A epitopes recognized. While the temporal kinetics of the Tg HLA-B27/NP.383-391-specific CD8+ T cell response paralleled the H2-D(b)/NP.366-374-specific response of non-Tg H2b mice, the magnitude was less. Using epitope prediction programs, we identified three novel B27-restricted influenza A epitopes, PB2.702-710, PB1.571-579, and PB2.368-376, recognized during both the primary and secondary response to infection. Although the secondary NP.383-391-specific response was dominant, PB1.571-579 and PB2.368-376 stimulated stronger proliferative expansion in memory T cells. Our results indicate a broader B27/influenza A CTL repertoire than previously known. Together with results for other HLA class I alleles, this information will become important in improving vaccine strategies for influenza A and other human pathogens.  相似文献   

2.
Although mice transgenic (Tg) for human MHC (HLA) class I alleles could provide an important model for characterizing HLA-restricted viral and tumor Ag CTL epitopes, the extent to which Tg mouse T cells become HLA restricted in the presence of endogenous H2 class I and recognize the same peptides as in HLA allele-matched humans is not clear. We previously described Tg mice carrying the HLA-B27, HLA-B7, or HLA-A2 alleles expressed as fully native (HLA(nat)) (with human beta(2)-microglobulin) and as hybrid human/mouse (HLA(hyb)) molecules on the H2(b) background. To eliminate the influence of H2(b) class I, each HLA Tg strain was bred with a H2-K(b)/H2-D(b)-double knockout (DKO) strain to generate mice in which the only classical class I expression was the human molecule. Expression of each HLA(hyb) molecule and HLA-B27(nat)/human beta(2)-microglobulin led to peripheral CD8(+) T cell levels comparable with that for mice expressing a single H2-K(b) or H2-D(b) gene. Influenza A infection of Tg HLA-B27(hyb)/DKO generated a strong CD8(+) T cell response directed at the same peptide (flu nucleoprotein NP383-391) recognized by CTLs from flu-infected B27(+) humans. As HLA-B7/flu epitopes were not known from human studies, we used flu-infected Tg HLA-B7(hyb)/DKO mice to examine the CTL response to candidate peptides identified based on the B7 binding motif. We have identified flu NP418-426 as a major HLA-B7-restricted flu CTL epitope. In summary, the HLA class I Tg/H2-K/H2-D DKO mouse model described in this study provides a sensitive and specific approach for identifying and characterizing HLA-restricted CTL epitopes for a variety of human disease-associated Ags.  相似文献   

3.
Influenza A virus infection of C57BL/6 mice is a well-characterized model for studying CD8+ T cell-mediated immunity. Analysis of primary and secondary responses showed that the liver is highly enriched for CD8+ T cells specific for the immunodominant H2D(b)NP(366-374) (D(b)NP(366)) epitope. Functional analysis established that these liver-derived virus-specific CD8+ T cells are fully competent cytotoxic effectors and IFN-gamma secretors. In addition, flow cytometric analysis of early apoptotic cells showed that these influenza-specific CD8+ T cells from liver are as viable as those in the spleen, bronchoalveolar lavage, mediastinal lymph nodes, or lung. Moreover, cytokine profiles of the influenza-specific CD8+ T cells recovered from different sites were consistent with the bronchoalveolar lavage, rather than liver population, being the most susceptible to activation-induced cell death. Importantly, adoptively transferred influenza virus-specific CD8+ T cells from the liver survived and were readily recalled after virus challenge. Together, these results show clearly that the liver is not a "graveyard" for influenza virus-specific CD8+ T cells.  相似文献   

4.
A reverse genetics strategy was used to insert the OVA peptide (amino acid sequence SIINFEKL; OVA(257-264)) into the neuraminidase stalk of both the A/PR8 (H1N1) and A/HKx31 (H3N2) influenza A viruses. Initial characterization determined that K(b)OVA257 is presented on targets infected with PR8-OVA and HK-OVA without significantly altering D(b) nucleoprotein (NP)366 presentation. There were similar levels of K(b)OVA257- and D(b)NP366-specific CTL expansion following both primary and secondary intranasal challenge. Interestingly, while variable, the presence of the immunodominant K(b)OVA257-specific response resulted in diminished D(b) acidic polymerase224- and K(b) basic polymerase subunit 1(703)-, but not D(b)NP366-specific responses and didn't alter endogenous influenza A virus-specific immunodominance hierarchies. However, challenging PR8-OVA-primed mice with HK-OVA via the i.p. route, and thereby limiting Ag dose, led to a reduction in the magnitude of all the influenza A virus-specific responses measured. A similar reduction in CTL response to native epitopes was also seen following primary respiratory HK-OVA infection of mice that received substantial numbers of K(b)OVA257-specific TCR transgenic T cells. Thus, during the course of infection, the generation of individual virus-specific CTL responses is independently regulated. However, in cases in which Ag is limiting, or high precursor frequency, the presence of immunodominant CTL responses can impact on the magnitude of other specific populations. Therefore, depending on both the size of the T cell precursor pool and the mode of Ag presentation, the addition of a major epitope can diminish the size of endogenous, influenza-specific CD8+ T cell responses, although never to the point that these are totally compromised.  相似文献   

5.
Influenza primed mice are protected against lethal infection with H1N1 A/CA/04/E3/09 virus, and T depletion and serum transfer studies suggest a T-dependent mechanism. We therefore set out to investigate the quality of the cross-reactive T cell response to CA/E3/09 in mice primed with H3N2 influenza A/Hong Kong/X31 virus. Sequences of the immunodominant nucleoprotein (NP) NP366–374 and acid polymerase (PA) PA224–233 CD8 epitopes from X31 each differ from the CA/E3/09 virus by one amino acid: an M371V substitution at position 6 of the NP peptide, and an S224P substitution at position 1 of the PA peptide, raising questions about the role of these epitopes in protection. PA224–233 peptides from either virus could elicit IFN-γ spot forming cells from mice infected with X31, indicating cross-reactivity of these two peptides. However, no T cell responses to either PA224–233 peptide were detectable after primary CA/E3/09 infection, suggesting it is cryptic in this virus. In contrast, primary responses to the NP366 peptides were detectable after infection with either virus, but did not cross-react in vitro. Similarly, H2-Db tetramers of each NP epitope stained CD8+ T cells from each respective virus infection, but did not obviously cross-react. Early after lethal CA/E3/09 challenge, X31 primed mice had enhanced IFN-γ responses toward both NP366 peptides, as well as recall responses to a set of subdominant NP and PA peptides not detectable after primary X31 infection alone. Furthermore, dual-tetramer staining revealed an expanded population of CD8 T cells reactive to both NP366 variant peptides also not seen after the priming infection alone. These observations demonstrate unusual CD8+ T cell cross-reactivity and specificity are elicited after primary and secondary CA/E3/09 influenza virus infections.  相似文献   

6.
Screening with the flow cytometric IFN-gamma assay has led to the identification of a new immunogenic peptide (SSYRRPVGI) [corrected] from the influenza PB1 polymerase (PB1(703--711)) and a mimotope (ISPLMVAYM) from the PB2 polymerase (PB2(198--206)). CD8(+) T cells specific for K(b)PB1(703) make both IFN-gamma and TNF-alpha following stimulation with both peptides. The CD8(+) K(b)PB1(703)(+) population kills PB2(198)-pulsed targets, but cell lines stimulated with PB2(198) neither bind the K(b)PB1(703) tetramer nor become CTL. This CD8(+)K(b)PB1(703)(+) population is prominent in the primary response to an H3N2 virus, although it is much less obvious following secondary challenge of H1N1-primed mice. Even so, we can now account for >40% of the CD8(+) T cells in a primary influenza pneumonia and >85% of those present after H3N2 --> H1N1 challenge. Profiles of IFN-gamma and TNF-alpha staining following in vitro stimulation have been traced for the four most prominent influenza peptides through primary and secondary responses into long-term memory. The D(b)NP(366) epitope that is immunodominant after the H3N2 --> H1N1 challenge shows the lowest frequencies of CD8(+) IFN-gamma(+)TNF-alpha(+) cells for >6 wk, and the intensity of IFN-gamma staining is also low for the first 3 wk. By 11 wk, however, the IFN-gamma/TNF-alpha profiles look to be similar for all four epitopes. At least by the criterion of cytokine production, there is considerable epitope-related functional diversity in the influenza virus-specific CD8(+) T cell response. The results for the K(b)PB1(703) epitope and the PB2(198) mimotope also provide a cautionary tale for those using the cytokine staining approach to identity antigenic peptides.  相似文献   

7.
The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1(703)+, CD8+ KbNS2(114)+, and CD8+ DbPB1-F2(62)+ T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the -NP-PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the -NP-PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1(703)+, CD8+ KbNS2(114)+, and CD8+ DbPB1-F2(62)+ sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the -NP-PA deletion viruses. These findings have implications for both natural infections and vaccines.  相似文献   

8.
Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances.  相似文献   

9.
The emergence of the novel reassortant A(H1N1)-2009 influenza virus highlighted the threat to the global population posed by an influenza pandemic. Pre-existing CD8(+) T-cell immunity targeting conserved epitopes provides immune protection against newly emerging strains of influenza virus, when minimal antibody immunity exists. However, the occurrence of mutations within T-cell antigenic peptides that enable the virus to evade T-cell recognition constitutes a substantial issue for virus control and vaccine design. Recent evidence suggests that it might be feasible to elicit CD8(+) T-cell memory pools to common virus mutants by pre-emptive vaccination. However, there is a need for a greater understanding of CD8(+) T-cell immunity towards commonly emerging mutants. The present analysis focuses on novel and immunodominant, although of low pMHC-I avidity, CD8(+) T-cell responses directed at the mutant influenza D(b)NP(366) epitope, D(b)NPM6A, following different routes of infection. We used a C57BL/6J model of influenza to dissect the effectiveness of the natural intranasal (i.n.) versus intraperitoneal (i.p.) priming for generating functional CD8(+) T cells towards the D(b)NPM6A epitope. In contrast to comparable CD8(+) T-cell responses directed at the wild-type epitopes, D(b)NP(366) and D(b)PA(224), we found that the priming route greatly affected the numbers, cytokine profiles and TCR repertoire of the responding CD8(+) T cells directed at the D(b)NPM6A viral mutant. As the magnitude, polyfunctionality, and T-cell repertoire diversity are potential determinants of the protective efficacy of CD8(+) T-cell responses, our data have implications for the development of vaccines to combat virus mutants.  相似文献   

10.
The role of tumor necrosis factor (TNF) in regulating various phases of the antiviral T-cell response is incompletely understood. Additionally, despite strong evidence ascribing a role for TNF in protecting against T-cell-dependent autoimmunity, the underlying mechanisms are still obscure. To address these issues, we have investigated the role of tumor necrosis factor receptors (TNFRs) I (p55R) and II (p75R) in regulating CD8 T-cell responses to lymphocytic choriomeningitis virus (LCMV) with wild-type, p55R-deficient (p55(-/-)), p75R-deficient (p75(-/-)), and p55R- and p75R-deficient (DKO) mice. Loss of p55R increased the number of memory CD8 T cells to only one of the two immunodominant epitopes, and p75R deficiency had a minimal impact on the T-cell response to LCMV. Strikingly, deficiency of both p55R and p75R had a more dramatic effect on the LCMV-specific CD8 T-cell response; in the DKO mice, as a sequel to enhanced expansion and a reduction in contraction of CD8 T cells, there was a substantial increase in the number of memory CD8 T cells (specific to the two immunodominant epitopes). While the majority of LCMV-specific memory CD8 T cells in wild-type mice were CD62Lhi CCR7hi (central memory), a major proportion of memory CD8 T cells in DKO mice were CD62Llo CCR7hi. TNFR deficiency did not affect the proliferative renewal of memory CD8 T cells. Taken together, these data suggested that TNFRs p55R and p75R have overlapping roles in downregulating CD8 T-cell responses and establishment of immune homeostasis during an acute viral infection.  相似文献   

11.
Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.  相似文献   

12.
The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8(+) memory T-cell pool (<0.5 to >10%) by sequential priming with two different influenza A viruses (H3N2-->H1N1) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T-cell pool, and only a portion of the memory population in the lymphoid tissue could be shown to proliferate. The great majority of the CD8(+) D(b)NP(366)(+) set that localized to the infected respiratory tract had, however, cycled at least once, though recent cell division was shown not to be a prerequisite for T-cell extravasation. The selective induction of CD8(+) T-cell memory can thus greatly limit the damage caused by a virulent influenza A virus, with the extent of protection being directly related to the number of available responders. Furthermore, a large pool of CD8(+) memory T cells may be only partially utilized to deal with a potentially lethal influenza infection.  相似文献   

13.
We investigated the specific and cross-reactive CD8 T cell immunity to three natural variants (of different geno/serotype) of the small hepatitis B surface Ag (or S protein). The D(d)-binding variants of the S(201-209) epitope showed different immunogenicity. The loss of the consensus C-terminal (P9) anchor abrogated its immunogenicity. In contrast, a conservative (serine vs asparagine) exchange at P7 primed cross-reactive CD8 T cells that preferentially recognized the priming variant. Cross-reactive CD8 T cell responses to a variant could be primed in mice tolerant to an alternative variant of the D(d)-binding S(201-209) peptide. Loss of the C-terminal (P10) anchor in S(185-194) eliminated its immunogenicity in HLA-A*0201(A2)-transgenic mice but two conservative exchanges (leucine vs valine in P2, and leucine vs isoleucine in P6) in S(208-216) generated cross-reactive CD8 T cell responses with strong preference for the priming variant. Similar cross-reactive recognition of variant envelope epitopes were also found in S(208-216)-specific CD8 T cells from hepatitis B virus (HBV)-infected patients. Distinct CD8 T cell populations cross-reactive to natural variants of class I-restricted HBV epitopes can be primed by vaccination (of mice) or natural infection (of humans), and they may play a role in the "spontaneous remission" or the specific immunotherapy of chronic HBV infection.  相似文献   

14.
The effector function of CD8 T cells is mediated via cell-mediated cytotoxicity and production of cytokines like gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). While the roles of perforin-dependent cytotoxicity, IFN-gamma, and TNF-alpha in controlling acute viral infections are well studied, their relative importance in defense against chronic viral infections is not well understood. Using mice deficient for TNF receptor (TNFR) I and/or II, we show that TNF-TNFR interactions have a dual role in mediating viral clearance and downregulating CD8 and CD4 T-cell responses during a chronic lymphocytic choriomeningitis virus (LCMV) infection. While wild-type (+/+) and TNFR II-deficient (p75(-/-)) mice cleared LCMV from the liver and lung, mice deficient in TNFR I (p55(-/-)) or both TNFR I and TNFR II (double knockout [DKO]) exhibited impaired viral clearance. The inability of p55(-/-) and DKO mice to clear LCMV was not a sequel to either suboptimal activation of virus-specific CD8 or CD4 T cells or impairment in trafficking of LCMV-specific CD8 T cells to the liver and lung. In fact, the expansion of LCMV-specific CD8 and CD4 T cells was significantly higher in DKO mice compared to that in +/+, p55(-/-), and p75(-/-) mice. TNFR deficiency did not preclude the physical deletion of CD8 T cells specific for nucleoprotein 396 to 404 but delayed the contraction of CD8 T-cell responses to the epitopes GP33-41 and GP276-285 in the viral glycoprotein. The antibody response to LCMV was not significantly altered by TNFR deficiency. Taken together, these findings have implications in development of immunotherapy in chronic viral infections of humans.  相似文献   

15.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

16.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

17.
Vaccinia virus infection can confer immunity to smallpox by inducing potent T cell and antibody responses. While the CD8 T cell response to vaccinia virus has been well characterized, less is known about factors required for priming and memory for the CD4 T cells. Focusing on two recently described epitopes, we show that after intranasal infection, both I1L and L4R epitopes are co-dominant during the acute response, but the I1L epitope dominates during memory. CD4 T cell priming was intact in the absence of CD80/86, however secondary responses were reduced. This contrasts with our previous data showing CD80/86–CD28 interaction is required for optimal primary and memory CD8 T cell responses. The absence of CD80/86 also changed the immunodominance hierarchy during memory, with the I1L and L4R responses becoming co-dominant in knockout mice. These data highlight different costimulatory requirements for primary CD4 and CD8 T cell responses to vaccinia virus.  相似文献   

18.
The mechanisms underlying epitope selection and the potential impact of immunodominance hierarchies on peptide-based vaccines are not well understood. Recently, we have shown that two immunodominant MHC class I-restricted epitopes, NP(366-374)/D(b) (nucleoprotein (NP)) and PA(224-233)/D(b) (acidic polymerase (PA)), which drive the CD8(+) T cell response to influenza virus infection in C57BL/6 mice, are differentially expressed on infected cells. Whereas NP appears to be strongly expressed on all infected cells, PA appears to be strongly expressed on dendritic cells but only weakly expressed on nondendritic cells. Thus, the immune response to influenza virus may involve T cells specific for epitopes, such as PA, that are poorly expressed at the site of infection. To examine the consequences of differential Ag presentation on peptide vaccination, we compared the kinetics of the T cell response and influenza virus clearance in mice vaccinated with the NP or PA peptide. Vaccination with either the NP or PA peptide resulted in accelerated and enhanced Ag-specific T cell responses at the site of infection following influenza virus challenge. These T cells were fully functional in terms of their ability to produce IFN-gamma and TNF-alpha and to mediate cytolytic activity. Despite this enhancement of the Ag-specific T cell response, PA vaccination had a detrimental effect on the clearance of influenza virus compared with unvaccinated or NP-vaccinated mice. These data suggest that differential Ag presentation impacts the efficacy of T cell responses to specific epitopes and that this needs to be considered for the development of peptide-based vaccination strategies.  相似文献   

19.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

20.
The mechanisms that regulate CMV-specific T cell responses in vivo are poorly understood. During murine CMV infection of B6 mice, primary responses in the spleen are dominated by CD8 T cells reactive with antigenic epitopes in M45, M57, and m139 murine CMV gene products. However, during the later persistent phase of infection, CD8 T cell responses to epitopes in m139 and M38 viral gene products predominate. The basis for this shift in CD8 T populations is unknown. In this study, we demonstrate that OX40, a TNFR superfamily member, specifically regulates the accumulation of CD8 T cells reactive with the persistent-phase epitopes. Defective CD8 T cell responses in OX40(-/-) mice were replicated in MHC class II(-/-) mice implying that CD4 T cells in part controlled the differentiation of the CD8 T cell clones responsive to these epitopes during persistent infection. Furthermore, treatment of infected mice with an agonist OX40 Ab induced expansion of protective primary virus-specific CD8 T cells independent of CD4 T cell help, but CD4 T cells were crucial for anti-OX40 to promote CD8 T cells reactive to the persistent dominant epitopes. Collectively, these results indicate manipulation of OX40 may be useful in improving cellular immunotherapy regimes for treatment of persistent virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号