首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously described that the cold-induced apoptosis of cultured hepatocytes is mediated by an increase in the cellular chelatable iron pool. We here set out to assess whether a mitochondrial permeability transition (MPT) is involved in cold-induced apoptosis. When cultured hepatocytes were rewarmed after 18 h of cold (4°C) incubation in cell culture medium or University of Wisconsin solution, the vast majority of cells rapidly lost mitochondrial membrane potential. This loss was due to MPT as assessed by confocal laser scanning microscopy and as evidenced by the inhibitory effect of the MPT inhibitors trifluoperazine plus fructose. The occurrence of the MPT was iron-dependent: it was strongly inhibited by the iron chelators 2,2′-dipyridyl and deferoxamine. Addition of trifluoperazine plus fructose also strongly inhibited cold-induced apoptosis, suggesting that the MPT constitutes a decisive intermediate event in the pathway leading to cold-induced apoptosis. Further experiments employing the non-site-specific iron indicator Phen Green SK and specifically mitochondrial iron indicators and chelators (rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester, RPA, and rhodamine B-[(2,2′-bipyridin-4-yl)aminocarbonyl]benzyl ester, RDA) suggest that it is the cold-induced increase in cytosolic chelatable iron that triggers the MPT and that mitochondrial chelatable iron is not involved in this process.  相似文献   

2.
A series of fluorescent iron chelators has been synthesized such that a fluorescent function is covalently linked to a 3-hydroxypyridin-4-one. In the present study, the fluorescent iron chelators were loaded into isolated rat hepatocytes. The intracellular fluorescence was not only quenched by an addition of a highly lipophilic 8-hydroxyquinoline-iron(III) complex but also was dequenched by the addition of an excess of the membrane-permeable iron chelator CP94 (1,2-diethyl-3-hydroxypyridin-4-one). The time course of uptake of iron and iron chelation in single, intact cells was recorded on-line by using digital fluorescence microscopy. Intracellular concentrations of various fluorescent iron chelators were determined by using a spectrofluorophotometer subsequent to lysis of probe-loaded cells and were found to depend on their partition coefficients; the more hydrophobic the compound, the higher the intracellular concentration. An ex situ calibration method was used to determine the chelatable iron pool of cultured rat hepatocytes. CP655 (7-diethylamino-N-[(5-hydroxy-6-methyl-4-oxo-1,4-dihydropyridin-3-yl)methyl]-N-methyl-2-oxo-2H-chromen-3-carboxamide), which is a moderately lipophilic fluorescent chelator, was found to be the most sensitive probe for monitoring chelatable iron, as determined by the intracellular fluorescence increase induced by the addition of CP94. The concentration of the intracellular chelatable iron pool in hepatocytes was determined by this probe to be 5.4+/-1.3 microM.  相似文献   

3.
U Rauen  F Petrat  T Li  H De Groot 《FASEB journal》2000,14(13):1953-1964
When incubated at 4 degrees C, cultured rat hepatocytes or liver endothelial cells exhibit pronounced injury and, during earlier rewarming, marked apoptosis. Both processes are mediated by reactive oxygen species, and marked protective effects of iron chelators as well as the protection provided by various other antioxidants suggest that hydroxyl radicals, formed by classical Fenton chemistry, are involved. However, when we measured the Fenton chemistry educt hydrogen peroxide and its precursor, the superoxide anion radical, formation of both had markedly decreased and steady-state levels of hydrogen peroxide did not alter during cold incubation of either liver endothelial cells or hepatocytes. Similarly, there was no evidence of an increase in O2-/H2O2 release contributing to cold-induced apoptosis occurring on rewarming. In contrast to the release/level of O2- and H2O2, cellular homeostasis of the transition metal iron is likely to play a key role during cold incubation of cultured hepatocytes: the hepatocellular pool of chelatable iron, measured on a single-cell level using laser scanning microscopy and the fluorescent indicator phen green, increased from 3.1 +/- 2.3 microM (before cold incubation) to 7.7 +/- 2.4 microM within 90 min after initiation of cold incubation. This increase in the cellular chelatable iron pool was reversible on rewarming after short periods of cold incubation. The cold-induced increase in the hepatocellular chelatable iron pool was confirmed using the calcein method. These data suggest that free radical-mediated hypothermia injury/cold-induced apoptosis is primarily evoked by alterations in the cellular iron homeostasis/a rapid increase in the cellular chelatable iron pool and not by increased formation of O2-/H2O2.  相似文献   

4.
Friedreich's ataxia (FRDA) is caused by low expression of frataxin, a small mitochondrial protein. Studies with both yeast and mammals have suggested that decreased frataxin levels lead to elevated intramitochondrial concentrations of labile (chelatable) iron, and consequently to oxidative mitochondrial damage. Here, we used the mitochondrion-selective fluorescent iron indicator/chelator rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzylester (RPA) to determine the mitochondrial chelatable iron of FRDA patient lymphoblast and fibroblast cell lines, in comparison with age- and sex-matched control cells. No alteration in the concentration of mitochondrial chelatable iron could be observed in patient cells, despite strongly decreased frataxin levels. Uptake studies with (55)Fe-transferrin and iron loading with ferric ammonium citrate revealed no significant differences in transferrin receptor density and iron responsive protein/iron regulatory element binding activity between patients and controls. However, sensitivity to H(2)O(2) was significantly increased in patient cells, and H(2)O(2) toxicity could be completely inhibited by the ubiquitously distributing iron chelator 2,2'-dipyridyl, but not by the mitochondrion-selective chelator RPA. Our data strongly suggest that frataxin deficiency does not affect the mitochondrial labile iron pool or other parameters of cellular iron metabolism and suggest a decreased antioxidative defense against extramitochondrial iron-derived radicals in patient cells. These results challenge current concepts favoring the use of mitochondrion-specific iron chelators and antioxidants to treat FRDA.  相似文献   

5.
Ascorbic acid improves endothelial barrier function by decreasing the permeability of endothelial cells cultured on semi-porous membrane filters. This decrease was not due to enhanced collagen synthesis and was mimicked by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoic acid (EDHB). Since EDHB is known to chelate intracellular free iron, the effects of two membrane-permeant iron chelators were tested on endothelial permeability. Both 2,2′-dipyridyl and desferrioxamine decreased trans-endothelial permeability in a concentration-dependent manner. Increasing intracellular iron with a chelate of 8-hydroxyquinoline and ferric iron prevented effects of both EDHB and intracellular ascorbate. That EDHB and ascorbate did in fact chelate intracellular iron was supported by finding that they both decreased the cellular fluorescence quenching of the iron-sensitive dye Phen green SK. These results show that chelation of intracellular iron decreases endothelial barrier permeability and implicate this mechanism in the ability of EDHB and possibly intracellular ascorbate to tighten the endothelial barrier.  相似文献   

6.
A method for the direct measurement of intracellular nitric oxide (NO) production stimulated by penicillin G (PG) in cultured hippocampal neurons with diaminoanthraquinone (DAA) using laser scanning confocal microscopy (LSCM) was developed. Intracellular DAA fluorescence could specifically represent NO production based on two facts: (1) 3-morpholinosydnonimine, a NO donor, could dose-dependently increase DAA fluorescence; and (2) haemoglobin, a NO scavenger, could inhibit the increase of DAA fluorescence. The PG dose-dependently increased the intercellular level of glutamate (Glu, 5 min after stimulation) and the intracellular NO production (30 min throughout stimulation). The increase of NO production could be reversed by N(w)-nitro- l -arginine (a NO synthase inhibitor), and also by d (-)2-amino-5-phosphonovaleric acid, a subtype of Glu receptor antagonist. These results revealed that DAA could be used to indicate real-time and kinetic intracellular NO production of hippocampal neurons with higher sensitivity, specificity and accuracy.  相似文献   

7.
In brain slice preparations, chloride movements across the cell membrane of living cells are measured traditionally with 36Cl- tracer methods, Cl--selective microelectrodes, or whole-cell recording using patch clamp analysis. We have developed an alternative, noninvasive technique that uses the fluorescent Cl- ion indicator, 6-methoxy-N-ethylquinolinium iodide (MEQ), to study changes in intracellular Cl- by epifluorescence or UV laser scanning confocal microscopy. In brain slices taken from rodents younger than 22 days of age, excellent cellular loading is achieved with the membrane-permeable form of the dye, dihydro-MEQ. Subsequent intracellular oxidation of dihydro-MEQ to the Cl--sensitive MEQ traps the polar form of the dye inside the neurons. Because MEQ is a single-excitation and single-emission dye, changes in intracellular Cl- concentrations can be calibrated from the Stern-Volmer relationship, determined in separate experiments. Using MEQ as the fluorescent indicator for Cl-, Cl- flux through the gamma-aminobutyric acid (GABA)-gated Cl- channel (GABAA receptor) can be studied by dynamic video imaging and either nonconfocal (epifluorescence) or confocal microscopy in the acute brain slice preparation. Increases in intracellular Cl- quench MEQ fluorescence, thereby reflecting GABAA receptor activation. GABAA receptor functional activity can be measured in discrete cells located in neuroanatomically defined populations within areas such as the neocortex and hippocampus. Changes in intracellular Cl- can also be studied under various conditions such as oxygen/glucose deprivation ("in vitro ischemia") and excitotoxicity. In such cases, changes in cell volume may also occur due to the dependence of cell volume regulation on Na+, K+, and Cl- flux. Because changes in cell volume can affect optical fluorescence measurements, we assess cell volume changes in the brain slice using the fluorescent indicator calcein-AM. Determination of changes in MEQ fluorescence versus calcein fluorescence allows one to distinguish between an increase in intracellular Cl- and an increase in cell volume.  相似文献   

8.
Because Mg2+ and Li+ ions have similar chemical properties, we have hypothesized that Li+/Mg2+ competition for Mg2+ binding sites is the molecular basis for the therapeutic action of lithium in manic-depressive illness. By fluorescence spectroscopy with furaptra-loaded cells, the free intracellular Mg2+ concentration within the intact neuroblastoma cells was found to increase from 0. 39 +/- 0.04 mM to 0.60 +/- 0.04 mM during a 40-min Li+ incubation in which the total intracellular Li+ concentration increased from 0 to 5.5 mM. Our fluorescence microscopy observations of Li+-free and Li+-loaded cells also indicate an increase in free Mg2+ concentration upon Li+ incubation. By 31P NMR, the free intracellular Mg2+ concentrations for Li+-free cells was 0.35 +/- 0. 03 mM and 0.80 +/- 0.04 mM for Li+-loaded cells (final total intracellular Li+ concentration of 16 mM). If a Li+/Mg2+ competition mechanism is present in neuroblastoma cells, an increase in the total intracellular Li+ concentration is expected to result in an increase in the free intracellular Mg2+ concentration, because Li+ displaces Mg2+ from its binding sites within the nerve cell. The fluorescence spectroscopy, fluorescence microscopy, and 31P NMR spectroscopy studies presented here have shown this to be the case.  相似文献   

9.
Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of NO.  相似文献   

10.
It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only during the cold, or whether application during the rewarming phase also prevents damage. We aimed to study this after cold normoxic and hypoxic conditions. LLC-PK1 cells were incubated at 4 degrees C in Krebs-Henseleit buffer for 6 or 24h, followed by 18 or 6h rewarming, respectively. Cold preservation was performed under both normoxic (95% air/5% CO2) and hypoxic (95% N2/5% CO2) conditions. The iron chelator 2,2'-DPD (100 microM), anti-oxidants BHT (20 microM) or sibilinin (200 microM), and xanthine oxidase inhibitor allopurinol (100 microM) were added during either cold preservation plus rewarming, or rewarming alone. Cell damage was assessed by LDH release (n=3-9). Addition of 2,2'-DPD and BHT during cold hypoxia plus rewarming did, but during rewarming alone did not prevent cell damage. When added during rewarming after 6h cold normoxic incubation, BHT and 2,2'-DPD inhibited rewarming injury compared to control (p<0.05). Allopurinol did not prevent cell damage in any experimental set-up. Our data show that application of iron chelators or anti-oxidants during the rewarming phase protects cells after normoxic but not hypoxic incubation. Allopurinol had no effect. Since kidneys are hypoxic during transplantation, measures aimed at preventing cold-induced and rewarming injury should be taken during the cold.  相似文献   

11.
The calcein-AM (calcein-acetoxymethyl ester) method is a widely used technique that is supposed to assay the intracellular 'labile iron pool' (LIP). When cells in culture are exposed to this ester, it passes the plasma membrane and reacts with cytosolic unspecific esterases. One of the reaction products, calcein, is a fluorochrome and a hydrophilic alcohol to which membranes are non-permeable and which, consequently, is retained within the cytosol of cells. Calcein fluorescence is quenched following chelation of low-mass labile iron, and the degree of quenching gives an estimate of the amounts of chelatable iron. However, a requirement for the assay to be able to demonstrate cellular LIP in total is that such iron be localized in the cytosol and not in a membrane-limited compartment. For some time it has been known that a major part of cellular, redox-active, labile, low-mass iron is temporarily localized in the lysosomal compartment as a result of the autophagic degradation of ferruginous materials, such as mitochondrial complexes and ferritin. Even if some calcein-AM may escape cytosolic esterases and enter lysosomes to be cleaved by lysosomal acidic esterases, the resulting calcein does not significantly chelate iron at 相似文献   

12.
The effect of magnesium (Mg)-deficient culture on endothelial cell susceptibility to oxidative stress was examined. Bovine endothelial cells were cultured in either control sufficient (0.8 mM) or deficient (0.4 mM) levels of MgCl2. Oxygen radicals were produced extracellularly by the addition of dihydroxyfumarate and Fe(3+)-ADP. Isolated Mg-deficient endothelial cells produced 2- to 3-fold higher levels of thiobarbituric acid (TBA)-reactive materials when incubated with this free radical system. Additional studies were performed using digitized video microscopy and 2',7'-dichlorofluorescein diacetate (DCFDA) as an intracellular indicator for oxidative events at the single cell level. In response to the exogenous oxidative stress, endothelial cells exhibited a time-dependent increase in fluorescence, suggestive of intracellular lipid peroxidation. The increase in cellular fluorescence began within 1 min of free radical addition; the Mg-deficient cells exhibited a more rapid increase in fluorescence than that of Mg-sufficient cells. In separate experiments, cellular viability was assessed using the Trypan blue exclusion assay. Mg deficiency increased cytotoxicity of the added oxyradicals, but the loss of cellular viability began to occur only after 15 min of free radical exposure, lagging behind the detection of intracellular oxidation products. These results suggest that increased oxidative endothelial cell injury may contribute to vascular injury during Mg deficiency.  相似文献   

13.
The mitochondrial permeability transition (MPT) initiated by reactive oxygen species (ROS) plays an essential role in ischemia–reperfusion (IR) injury. Iron is a critical catalyst for ROS formation, and intracellular chelatable iron promotes oxidative injury-induced and MPT-dependent cell death in hepatocytes. Accordingly, our aim was to investigate the role of chelatable iron in IR-induced ROS generation, MPT formation, and cell death in primary rat hepatocytes. To simulate IR, overnight-cultured hepatocytes were incubated anoxically at pH 6.2 for 4 h and reoxygenated at pH 7.4. Chelatable Fe2+, ROS, and mitochondrial membrane potential were monitored by confocal fluorescence microscopy of calcein, chloromethyldichlorofluorescein, and tetramethylrhodamine methyl ester, respectively. Cell killing was assessed by propidium iodide fluorimetry. Ischemia caused progressive quenching of cytosolic calcein by more than 90%, signifying increased chelatable Fe2+. Desferal and starch–desferal 1 h before ischemia suppressed calcein quenching. Ischemia also induced quenching and dequenching of calcein loaded into mitochondria and lysosomes, respectively. Desferal, starch–desferal, and the inhibitor of the mitochondrial Ca2+ uniporter (MCU), Ru360, suppressed mitochondrial calcein quenching during ischemia. Desferal, starch–desferal, and Ru360 before ischemia also decreased mitochondrial ROS formation, MPT opening, and cell killing after reperfusion. These results indicate that lysosomes release chelatable Fe2+ during ischemia, which is taken up into mitochondria by MCU. Increased mitochondrial iron then predisposes to ROS-dependent MPT opening and cell killing after reperfusion.  相似文献   

14.
The present paper deals with the procedure of a quantitative determination of chelatable iron in biological microsamples (20-50 mg) using an electron spin resonance technique based on the iron incorporation into the stable iron (III)-desferrioxamine B complexes. The conclusion is, that the method developed is valuable one to characterize the availability of iron from different sources. Using the method developed, the share of iron outside the protein core was shown to be less then 0.5 percentages of the whole iron content in the horse spleen ferritin suspension with 100 mg protein per ml and average iron content of 810 iron atoms per protein molecule. For a set of tissue samples taken from internal organs and brain of mice, rats and rabbits the data on chelatable iron concentration have been obtained.  相似文献   

15.
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900–2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000.Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.This work was supported by the Deutsche Forschungsgemeinschaft grant De 531/1-1. We are particularly grateful to Dr. Ulrich Dirnagl (Department of Neurology, University of Munich, Marchioninistr. 15, 81377 Munich, Germany) for performing the confocal laser scanning microscopy and to Gerhard Adams for excellent technical assistance.  相似文献   

16.
Rad AM  Janic B  Iskander AS  Soltanian-Zadeh H  Arbab AS 《BioTechniques》2007,43(5):627-8, 630, 632 passim
Cell labeling with superparamagnetic iron oxides (SPIO) is becoming a routine procedure in cellular magnetic resonance imaging (MRI). Quantifying the intracellular iron in labeled cells is a prerequisite for determining the number of accumulated cells by quantitative MRI studies. To establish the most sensitive and reproducible method for measuring iron concentration in magnetically labeled cells, we investigated and compared four different methods using an ultraviolet-visible (UV/VIS) spectrophotometer. Background spectra were obtained for 5 and 10 M hydrochloric acids, a mixture of 100 mM citric acid plus ascorbic acid and bathophenanthroline sulphonate (BPS), and a mixture of 5 M hydrochloric acid plus 5% ferrocyanide. Spectra of the same solutions containing either 10 or 5 microg/mL iron oxides were also created to determine the peak absorbance wavelengths for the dissolved iron. In addition, different known iron concentrations were used to obtain calibration lines for each method. Based on the calibration factors, iron was measured in samples with a known amount of iron and in labeled cells. Methods based on the use of 10 M hydrochloric acid underestimated iron concentration in all experiments; for this method to give an accurate measurement, iron concentration in sample needs to be at least 3 microg/mL.  相似文献   

17.
The influence of calcium on the deformability of human granulocytes   总被引:2,自引:0,他引:2  
S Zaiss 《Biorheology》1990,27(5):701-709
Experiments were carried out to determine the importance of extra- and intracellular calcium for the deformability of granulocytes during filtration tests. At low calcium concentration (0.1 mM), granulocytes are more deformable than at the physiological free-calcium concentration of 1.25 mM. Increasing calcium concentrations up to 10 mM do not further impair the deformability. Parallel measurements of the intracellular calcium concentration by means of the fura fluorescence method were performed to explain this. Extracellular calcium concentrations between 1.25 mM and 10 mM had no influence on the intracellular calcium level. A lower extracellular calcium concentration (0.1 mM), however, decreased the intracellular calcium level. Therefore, the measurements of the intracellular calcium concentrations are consistent with the deformability results. Studies with the calcium entry blocker nifedipine suggested that a low intracellular calcium improves the deformability of granulocytes. It is concluded; (i) the physiological calcium concentration of 1.25 mM is stressful for isolated granulocytes, and (ii) the intracellular calcium level plays a crucial role in granulocyte deformability, i.e. the lower the intracellular calcium concentration the greater the deformability.  相似文献   

18.
The mechanism whereby fragments of streptokinase (SK) derived from its N terminus (e.g., SK1-59 or SK1-63) enhance the low plasminogen (PG)-activating ability of other fragments, namely SK64-386, SK60-414, SK60-387, and SK60-333 (reported previously), has been investigated using a synthetic peptide approach. The addition of either natural SK1-59, or chemically synthesized SK16-59, at saturation (about 500-fold molar excess) generated amidolytic and PG activation capabilities in equimolar mixtures of human plasminogen (HPG) and its complementary fragment (either SK60-414 or SK56-414, prepared by expression of truncated SK gene fragments in Escherichia coli) that were approximately 1.2- and 2.5-fold, respectively, of that generated by equimolar mixtures of native SK and HPG. Although in the absence of SK1-59 equimolar mixtures of SK56-414 and HPG could generate almost 80% of amidolytic activity, albeit slowly, less than 2% level of PG activation could be observed under the same conditions, indicating that the contribution of the N-terminal region lay mainly in imparting in SK56-414 an enhanced ability for PG activation. The ability of various synthetic peptides derived from the amino-terminal region (SK16-51, SK16-45, SK37-59, SK1-36, SK16-36, and SK37-51) to (1) complement equimolar mixtures of SK56-414 and HPG for the generation of amidolytic and PG activation functions, (2) inhibit the potentiation of SK56-414 and HPG by SK16-59, and (3) directly inhibit PG activation by the 1:1 SK-HPG activator complex was tested. Apart from SK16-59, SK16-51, and 16-45, the ability to rapidly generate amidolytic potential in HPG in the presence of SK56-414 survived even in the smaller SK-peptides, viz., SK37-59 and SK37-51. However, this ability was abolished upon specifically mutating the sequence -LTSRP-, present at position 42-46 in native SK. Although SK16-51 retained virtually complete ability for potentiation of PG activation in comparison to SK16-59 or SK1-59, this ability was reduced by approximately fourfold in the case of SK16-45, and completely abolished upon further truncation of the C-terminal residues to SK16-36 or SK1-36. Remarkably, however, these peptides not only displayed ability to bind PG, but also showed strong inhibition of PG activation by the native activator complex in the micromolar range of concentration; the observed inhibition, however, could be competitively relieved by increasing the concentration of substrate PG in the reaction, suggesting that this region in SK contains a site directed specifically toward interaction with substrate PG. This conclusion was substantiated by the observation that the potentiation of PG activating ability was found to be considerably reduced in a peptide (SK25-59) in which the sequence corresponding to this putative locus (residues 16-36) was truncated at the middle. On the other hand, fragments SK37-51 and SK37-59 did not show any inhibition of the PG activation by native activator complex. Taken together, these findings strongly support a model of SK action wherein the HPG binding site resident in the region 37-51 helps in anchoring the N-terminal domain to the strong intermolecular complex formed between HPG and the region 60-414. In contrast, the site located between residues 16 and 36 is qualitatively more similar to the previously reported PG interacting site (SK254-273) present in the core region of SK, in being involved in the relatively low-affinity enzyme-substrate interactions of the activator complex with PG during the catalytic cycle.  相似文献   

19.
The interphase NIH3T3 cells were vitally fluorescentstained with calcium indicator fluo-3 and Glogi probe C6-NBD-ceramide,and then the single cells were examined by laser scanning confocal microscopy(LSCFM) for subcellular distributions of Ca^2 and the location of Golgi apparatus.In these cells,the intracellular Ca^2 were found to be highly concentrated in the Golgi apparatus.The changes of distribution of cytosolic high Ca^2 region and the Golgi apparatus coincided with the cell cycle phase.In calcium free medium,when the plasma membrane of the cells which had been loaded with fluo-3/AM were permeated by digitonin,the fluorescence of the Golgi region decreased far less than that of the cytosol.Our results indicated that the Glogi lumen retained significantly high concentration of free calcium.  相似文献   

20.
Humic acid (HA), a potential toxin that has penetrated the drinking well water of blackfoot disease-endemic areas in Taiwan, has been implicated as an etiological factor of this disease. In this study, we investigated the effects of HA on the generation of reactive oxygen species (ROS) in cultured human umbilical vein endothelial cells (HUVECs). The generation of ROS was monitored by flow cytometry. Pretreatment of HUVECs with HA induced reactive oxygen species in a dose- and time-dependent manner. Xanthine oxidase inhibitor (Allopurinol), NADPH oxidase inhibitor (diphenylene iodomium) and calcium chelator (BAPTA) could not reduce the generation of ROS. Protein kinase C inhibitor (H7) could reduce the generation of ROS slightly, but the intracellular antioxidant glutathione monoethyl ester and the iron chelator desferrioxamine (DFO) could inhibit the generation of ROS completely. HA also enhanced the expression of ferritin and induced intracellular chelatable iron; however, HA reduced the expression of transferrin receptor. Pretreatment with DFO inhibited HA-mediated increases of ferritin synthesis and intracellular chelatable iron, but caused recovery of the inhibitory effect on transferrin receptor. Cotreatment with iron and HA induced more ROS and intracellular chelatable iron than iron or HA treatment alone. Furthermore, HA enhanced the accumulation of iron in endothelial cells. These data demonstrate that HA can increase the generation of ROS through enhancing the accumulation of intracellular iron. Taken together, our findings suggest that iron mediates HA-associated oxidative stress in endothelial cells, which may be a possible mechanism leading to atherothrombotic vascular injury observed for patients with blackfoot disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号