首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Xenopus tadpole is able to regenerate its tail, including skin, muscle, notochord, spinal cord and neurons and blood vessels. This process requires rapid tissue growth and morphogenesis. Here we show that a focus of apoptotic cells appears in the regeneration bud within 12 h of amputation. Surprisingly, when caspase-3 activity is specifically inhibited, regeneration is abolished. This is true of tails both before and after the refractory period. Programmed cell death is only required during the first 24 h after amputation, as later inhibition has no effect on regeneration. Inhibition of caspase-dependent apoptosis results in a failure to induce proliferation in the growth zone, a mispatterning of axons in the regenerate, and the appearance of ectopic otoliths in the neural tube, in the context of otherwise normal continued development of the larva. Larvae amputated during the refractory stage exhibit a much broader domain of caspase-3-positive cells, suggesting a window for the amount of apoptosis that is compatible with normal regeneration. These data reveal novel roles for apoptosis in development and indicate that a degree of apoptosis is an early and obligate component of normal tail regeneration, suggesting the possibility of the existence of endogenous inhibitory cells that must be destroyed by programmed cell death for regeneration to occur.  相似文献   

2.
3.
The caudal myofibers of Plethodon cinereus do not appear to participate directly in epimorphic tail regeneration following either autotomy or surgical amputation of the tail. The possibility that tail musculature might indirectly influence morphogenesis of the regenerate was tested by unilaterally removing 99% of the lateral muscle mass for five to six caudal segments. Ten days after muscle ablation, tails were amputated through the deficient area. Unlike previous experiences with ambystomid larvae, P. cinereus regulates completely producing a normal tail regenerate and at a rate comparable to that following simple amputation.  相似文献   

4.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

5.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

6.
In the polychaete Eurythoe complanata (Amphinomidae) regeneration of the nervous system has been monitored after amputation of anterior segments and after amputation plus extirpation of one to a few anterior ganglia of the ventral nerve cord. The serotonergic subunit of the nervous system was visualized with an antibody directed against the bioamine 5-HT. Cell proliferation could be demonstrated by incorporation of 5-bromo-2'-deoxyuridine. Antibody binding was visualized by fluorescence labeling and confocal laser scanning microscopy. The results show that regeneration of the nervous system occurs in two phases: (1) formation of primary neuronal structures by the "old" cord and (2) formation of new neurons in the regenerate that link up with the "old" system by their outgrowing axons. It is demonstrated that the nervous system is essential for regeneration: it induces cell proliferation in the blastema and subsequently in the regenerate. Extirpation of one ganglion retards regeneration, and extirpation of more than one ganglion prevents it completely, unless the affected segments are autotomized.  相似文献   

7.
The Enchytraeida Oligochaeta Enchytraeus japonensis propagates asexually by spontaneous autotomy. Normally, each of the 5-10 fragments derived from a single worm regenerates a head anteriorly and a tail posteriorly. Occasionally, however, a head is formed posteriorly in addition to the normal anterior head, resulting in a bipolar worm. This phenomenon prompted us to conduct a series of experiments to clarify how the head and the tail are determined during regeneration in this species. The results showed that (1) bipolar head regeneration occurred only after artificial amputation, and not by spontaneous autotomy, (2) anesthesia before amputation raised the frequency of bipolar head regeneration, and (3) an extraordinarily high proportion of artificially amputated head fragments regenerated posterior heads. Close microscopic observation of body segments showed that each trunk segment has one specific autotomic position, while the head segments anterior to the VIIth segment do not. Only the most posterior segment VII in the head has an autotomic position. Examination just after amputation found that the artificial cutting plane did not correspond to the normal autotomic position in most cases. As time passed, however, the proportion of worms whose cutting planes corresponded to the autotomic position increased. It was suspected that the fragments autotomized after the artificial amputation (corrective autotomy). This post-amputation autotomy was probably inhibited by anesthesia. The rate at which amputated fragments did not autotomize corresponded roughly to the rate of bipolar regeneration. It was hypothesized then that the head regenerated posteriorly if a fragment was not amputated at the precise autotomic position from which it regenerated without succeeding in corrective autotomy.  相似文献   

8.
Xenopus laevis tadpoles can regenerate tail, including spinal cord, after partial amputation, but lose this ability during a specific period around stage 45. They regain this ability after stage 45. What happens during this “refractory period” might hold the key to spinal cord regeneration. We hypothesize that electric currents at amputated stumps play significant roles in tail regeneration. We measured electric current at tail stumps following amputation at different developmental stages. Amputation induced large outward currents leaving the stump. In regenerating stumps of stage 40 tadpoles, a remarkable reversal of the current direction occurred around 12-24 h post-amputation, while non-regenerating stumps of stage 45 tadpole maintained outward currents. This reversal of electric current at tail stumps correlates with whether tails regenerate or not (regenerating stage 40—inward current; non-regenerating stage 45—outward current). Reduction of tail stump current using sodium-free solution decreased the rate of regeneration and percentage regeneration. Fin punch wounds healed normally at stages 45 and 48, and in sodium-free solution, suggesting that the absence of tail re-growth at stage 45 is regeneration-specific rather than a general inhibition of wound healing. These data suggest that electric signals might be one of the key players regulating regeneration.  相似文献   

9.
Regeneration of lost organs involves complex processes, including host defense from infection and rebuilding of lost tissues. We previously reported that Xenopus neuronal pentraxin I (xNP1) is expressed preferentially in regenerating Xenopus laevis tadpole tails. To evaluate xNP1 function in tail regeneration, and also in tail development, we analyzed xNP1 expression in tailbud embryos and regenerating/healing tails following tail amputation in the ‘regeneration’ period, as well as in the ‘refractory’ period, when tadpoles lose their tail regenerative ability. Within 10 h after tail amputation, xNP1 was induced at the amputation site regardless of the tail regenerative ability, suggesting that xNP1 functions in acute phase responses. xNP1 was widely expressed in regenerating tails, but not in the tail buds of tailbud embryos, suggesting its possible role in the immune response/healing after an injury. xNP1 expression was also observed in neural tissues/primordia in tailbud embryos and in the spinal cord in regenerating/healing tails in both periods, implying its possible roles in neural development or function. Moreover, during the first 48 h after amputation, xNP1 expression was sustained at the spinal cord of tails in the ‘regeneration’ period tadpoles, but not in the ‘refractory’ period tadpoles, suggesting that xNP1 expression at the spinal cord correlates with regeneration. Our findings suggest that xNP1 is involved in both acute phase responses and neural development/functions, which is unique compared to mammalian pentraxins whose family members are specialized in either acute phase responses or neural functions.  相似文献   

10.
11.
Spinal axons of the adult newt will regenerate when the spinal cord is severed or when the tail is amputated. Ischemia and associated hypoxia have been correlated with poor central nervous system regeneration in mammals. To test the effects of ischemia on newt spinal cord regeneration, the spinal cord and major blood vessels of the newt tail were severed 2 cm caudal to the cloaca as a primary injury. This primary injury severely reduced circulation in the caudal direction for 7 days; by day 8, circulation was largely restored. After various periods of time after primary injury, tails were amputated 1 cm caudal to the primary injury (in the area of ischemia) and tested for regeneration. If the tail was amputated within 5 days of the primary injury, regeneration did not occur. If amputation was 7 days or longer after the primary injury, a regenerative response occurred. Histology showed that in the non-regenerating tails the spinal cord and associated ependyma, known to be important to tail regeneration, had degenerated in the rostral direction. Such degeneration was prevented when tails were first amputated and allowed to form blastemas before the primary injury. The data indicate that the first 5-7 days of blastema formation are particularly sensitive to compromised blood flow (ischemia/hypoxia). It follows that mechanisms must be present in the adult newt to reduce ischemia to a minimum and thus allow ependymal outgrowth and tail regeneration.  相似文献   

12.
13.
Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.  相似文献   

14.
Cell death of asynaptic neurons in regenerating spinal cord   总被引:1,自引:0,他引:1  
The weakly electric fish Sternarchus albifrons possesses a unique class of asynaptic neurons, the electromotor neurons, whose axons constitute the electric organ. The cell bodies of origin of the electrocyte axons are located in the spinal cord. Both spinal cord and electromotor neurons ( electrocytes ) regenerate after amputation of the tail. Sternarchus spinal cords which have regenerated for 1 or more years show a progression in number of perikarya of electromotor neurons along the rostro-caudal axis. The most recently regenerated region of the cord is at the caudal end, which consists of a tube of ependyma. Progressing rostrally along regenerated spinal cord from the caudal end, numerous cells are generated and large numbers of electromotor neurons differentiate. The maximum number of electromotor neurons per transverse section of regenerated cord is five times higher than in normal mature cord. Rostral to this, the number of electromotor neurons decreases gradually to the normal number near the transition zone (the border with unregenerated cord). As the more rostral regenerated cord has presumably had a longer period of regeneration, we conclude that excess numbers of electromotor neurons are generated initially, and that subsequently the number of these neurons is decreased by cell death. This conclusion is supported by the fact that younger regenerates (2-4 months) have larger-than-normal numbers of perikarya of electromotor neurons extending up to the transition zone (Anderson and Waxman , 1981). No evidence of migration or depletion of electromotor neurons from unregenerated cord rostral to the amputation has been observed. Since the axons of the electromotor neurons in Sternarchus do not normally form any synapses, this study provides evidence that factors other than synaptic competition must be responsible for determining cell death during regeneration of these spinal neurons.  相似文献   

15.
Salamanders have the remarkable ability to regenerate many body parts following catastrophic injuries, including a fully functional spinal cord following a tail amputation. The molecular basis for how this process is so exquisitely well-regulated, assuring a faithful replication of missing structures every time, remains poorly understood. Therefore a study of microRNA expression and function during regeneration in the axolotl, Ambystoma mexicanum, was undertaken. Using microarray-based profiling, it was found that 78 highly conserved microRNAs display significant changes in expression levels during the early stages of tail regeneration, as compared to mature tissue. The role of miR-196, which was highly upregulated in the early tail blastema and spinal cord, was then further analyzed. Inhibition of miR-196 expression in this context resulted in a defect in regeneration, yielding abnormally shortened tails with spinal cord defects in formation of the terminal vesicle. A more detailed characterization of this phenotype revealed downstream components of the miR-196 pathway to include key effectors/regulators of tissue patterning within the spinal cord, including BMP4 and Pax7. As such, our dataset establishes miR-196 as an essential regulator of tail regeneration, acting upstream of key BMP4 and Pax7-based patterning events within the spinal cord.  相似文献   

16.
In many systems, ion flows and long-term endogenous voltage gradients regulate patterning events, but molecular details remain mysterious. To establish a mechanistic link between biophysical events and regeneration, we investigated the role of ion transport during Xenopus tail regeneration. We show that activity of the V-ATPase H(+) pump is required for regeneration but not wound healing or tail development. The V-ATPase is specifically upregulated in existing wound cells by 6 hours post-amputation. Pharmacological or molecular genetic loss of V-ATPase function and the consequent strong depolarization abrogates regeneration without inducing apoptosis. Uncut tails are normally mostly polarized, with discrete populations of depolarized cells throughout. After amputation, the normal regeneration bud is depolarized, but by 24 hours post-amputation becomes rapidly repolarized by the activity of the V-ATPase, and an island of depolarized cells appears just anterior to the regeneration bud. Tail buds in a non-regenerative ;refractory' state instead remain highly depolarized relative to uncut or regenerating tails. Depolarization caused by V-ATPase loss-of-function results in a drastic reduction of cell proliferation in the bud, a profound mispatterning of neural components, and a failure to regenerate. Crucially, induction of H(+) flux is sufficient to rescue axonal patterning and tail outgrowth in otherwise non-regenerative conditions. These data provide the first detailed mechanistic synthesis of bioelectrical, molecular and cell-biological events underlying the regeneration of a complex vertebrate structure that includes spinal cord, and suggest a model of the biophysical and molecular steps underlying tail regeneration. Control of H(+) flows represents a very important new modality that, together with traditional biochemical approaches, may eventually allow augmentation of regeneration for therapeutic applications.  相似文献   

17.
Summary The tail of the gymnotid Sternarchus albifrons, including the spinal cord, regenerates following amputation. Regenerated spinal cord shows a rostro-caudal gradient of differentiation. Cross sections of the most distal regenerated cord show radially enlarged ependymal cells, relatively undifferentiated cells, and numerous blood vessels. More anterior sections contain well differentiated electromotor neurons, glial cells, and myelinated axons. The number of electromotor-neuron cell bodies in cross sections of regenerated spinal cord is three to six times the number in nonregenerated cord. Distinct tracts of axons, easily identifiable in normal cord, are not distinguishable in cross sections of regenerated cord. Some reorganization of the spinal cord also appears to take place anterior to the site of transection.Individual electromotor neurons in the regenerated spinal cord have morphologies largely similar to those of normal electrocytes, i.e., cell bodies are rounded, lack dendrites, have synapses characterized by gap junctions with presynaptic axons, and lack an unmyelinated initial segment. The presence of electromotor neurons with normal morphology in regenerated spinal cord correlates with the re-establishment of relatively normal electrocyte axonSchwann cell relationships in the regenerating electric organ of this sternarchid.Supported in part by the Medical Research Service, Veterans Administration and by a grant from the National Institutes of Health. We also thank the Paralyzed Veterans of America for their support. We thank Mary E. Smith and Susan Cameron for excellent technical support  相似文献   

18.
Myohara M 《PloS one》2012,7(5):e37319
The term 'neoblast' was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts.  相似文献   

19.
During the regeneration of lizard tail, nerves sprouting from ganglia and the spinal cord invade the blastema as far as the apical epidermis. Electron microscopical observations reveal axons storing dense granules (dg) and dense core vesicles (dcv) which are concentrated in nerve terminals or in axoplasmatic regions. In the regenerating spinal cord (SC) these terminals resemble aminergic-peptidergic endings and grow as far as the distal portion of the SC, which is made up of irregularly arranged ependymal cells. Some axons storing dcv contact blastematic cells and other nerve terminals show a plasma membrane incomplete or broken. Whether this latter aspect is due to fixation artifacts or physiological rupture is unknown. Nerves containing dcv and a few dg also originate from spinal ganglia innervating the regenerating tail. The accumulation of material into these endings is probably slow and a possible trophic influence on the regeneration of lizard tail is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号