首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mRNA that codes for phosphoenolpyruvate carboxykinase accounts for approximately 0.2% of the protein synthesized in H4IIEC3 hepatoma cells maintained for 24 h in serum-free medium containing N6,O2'-dibutyryl cAMP and theophylline. This value decreases to 0.04% within 3 h after the addition of insulin. Maximal effects are produced by 10(-10) M insulin, and half-maximal deinduction of both the relative rate of synthesis of P-enolpyruvate carboxykinase and mRNA coding for P-enolpyruvate carboxykinase activity occurs at approximately 2 X 10(-12) M insulin. Porcine proinsulin is 4% as potent as porcine insulin since half-maximal deinduction of mRNA coding for P-enolpyruvate carboxykinase occurs at 5 X 10(-11) M. The concentration of proinsulin required to inhibit 125I-insulin binding by 50% is 2 X 10(-7) M, as compared to 6 X 10(-9) M for insulin; thus, the decreased sensitivity of this deinduction to proinsulin parallels the decreased binding affinity H4IIEC3 cells have for proinsulin as compared to insulin. These data indicate that insulin regulates P-enolpyruvate carboxykinase synthesis through a receptor-mediated process, that the effect occurs when less than 2% of the insulin receptors are occupied, and that this effect is exerted prior to the level of mRNA translation.  相似文献   

2.
The lateral motion of membrane lipids on lipopolysaccharide-stimulated murine B lymphocytes was measured using photobleaching recovery techniques. The mobility of the phospholipid analog 3,3'-dioctadecylindocarbocyanine iodide (DiI) was measured at 37 degrees C on B lymphocytes 48 h after stimulation by various concentrations of lipopolysaccharide. DiI mobility on lymphoblasts from cultures stimulated with 10 micrograms/ml lipopolysaccharide was reduced 50% compared with unstimulated, small B cells. However, both lower and higher lipopolysaccharide concentrations caused some decrease in lipid mobility. Lipid mobility was measured on B cells stimulated with 10 micrograms/ml lipopolysaccharide at zero time, on lymphoblasts at 18, 24, 48 and 72 h, and on immunoglobulin (Ig) -secreting lymphocytes at 96 h. The diffusion coefficient of DiI on both control and lipopolysaccharide-treated cells at zero time is 6.3 X 10(-9) cm2 X s-1. This value remains unchanged for unstimulated cells over 72 h. Lipid mobility of lipopolysaccharide-activated lymphoblasts decreased during incubation with lipopolysaccharide to 5.0, 3.4, 2.8 and 2.4 X 10(-9) cm2 X s-1 after 18, 24, 48 and 72 h, respectively. DiI mobility on immunoglobulin (Ig) -secreting lymphocytes identified at the foci of Protein A-coated sheep red blood cells plaques is 8.6 X 10(-9) cm2 X s-1, a value similar to that of unstimulated B cells. The effect of introducing various concentrations of a synthetic glucocorticoid, triamcinolone acetonide (TA), to 48 h lipopolysaccharide-stimulated cells for 6 h was examined. Maximal TA effect was observed at a concentration of 10(-7) M, which caused an increase in lipid mobility to 7.5 X 10(-9) cm2 X s-1. Exposing resting B cells (t = 0) or lymphoblasts (t = 24, 48 or 72 h) to TA for 3 h had no effect on lipid mobility. Treatment for 6 h with 10(-7) MTA increased DiI diffusion to 12.6, 9.9, 7.5 and 6.8 X 10(-9) cm2 X s-1 on control cells and on 24, 48 and 72 h lipopolysaccharide-activated lymphoblasts, respectively. A longer incubation of 12 h with 10(-7) MTA caused no further change in lipid lateral diffusion. The response was glucocorticoid-specific. In lymphoblasts (48 h) incubated an additional 6 h with 10(-7) MTA and a 100-fold excess of cortexolone or progesterone, the increase in lipid mobility was substantively blocked; estradiol and testosterone had no effect on lipid lateral diffusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

4.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

5.
G Y Ma  C D Gove    D A Hems 《The Biochemical journal》1978,174(3):761-768
1. Rapid effects of hormones on glycogen metabolism and fatty acid synthesis in the perfused liver of the mouse were studied. 2. In perfusions lasting 2h, of livers from normal mice, glucagon in successive doses, each producing concentrations of 10(-10) or 10(-9)M, inhibited fatty acid and cholesterol synthesis. In perfusions lasting 40--50 min, in which medium was not recycled, inhibition of fatty acid synthesis was only observed with glucagon at concentrations greater than 10(-9)M. This concentration was about two orders of magnitude higher than that required for the stimulation of glycogen breakdown. Glucagon did not inhibit the activity of acetyl-CoA carboxylase, assayed 10 or 20 min after addition of glucagon (10(-9) or 10(-10)M). It is proposed that the action of glucagon on hepatic fatty acid biosynthesis could be secondary in time to depletion of glycogen. Insulin prevented the effect of glucagon (10(-10)M) on glycogenolysis, but not that of vasopressin. 3. Livers of genetically obese (ob/ob) mice did not show significant inhibition of lipid biosynthesis in response to glucagon, although there was normal acceleration of glycogen breakdown. This resistance to glucagon action was not reversed by food deprivation. Livers of obese mice exhibited resistance to the counteraction by insulin of glucagon-stimulated glycogenolysis, which was reversible by partial food deprivation.  相似文献   

6.
Maximum 125I-IGF-I/Sm-C total binding to chick embryo fibroblasts was 3% at +37 degrees C and decreased to less than 1% in presence of 2.8 X 10(-9) M unlabelled IGF-I/Sm-C. Insulin did not compete with IGF-I/Sm-C for the binding to cells. Biological action of IGF-I/Sm-C was evaluated on 2-deoxyglucose and alpha-aminoisobutyrate uptake. Results are compared with those obtained with insulin. Maximal peptide effects on the two transport processes were obtained at a 0.65 X 10(-7) M concentration and for a 120 minute association time, whereas cells were markedly less sensitive to insulin and time response curves were different. These results suggest that insulin action on nutrient uptake in chick embryo fibroblasts is not mediated by the binding of the hormone to IGF-I/Sm-C receptors.  相似文献   

7.
Amino acid transport and [14C]leucine incorporation into liver proteins as well as the secretion of proteins into incubation medium were studied in liver cells isolated from coho salmon (Oncorhynchus kisutch) parr. Pink salmon (Oncorhynchus gorbuscha) or mammalian (bovine) insulin caused a significant increase in TCA-precipitable radioactivity from both cells and incubation medium. The effects appeared at insulin concentration of 10(-8) M with a maximal response at 5 X 10(-8) M. The radioactivity of the TCA-soluble fraction was not changed by insulin. Insulin increased the amount of the non-metabolized amino acid [14C]cycloleucine, in the TCA-soluble fraction of hepatocytes. The glycogen content of hepatocytes was increased in the presence of insulin at 10(-9) M but was not changed from the control value in the presence of insulin at 10(-8) M.  相似文献   

8.
Isolated liver cells from 24 h starved rats were incubated in Krebs-Ringer buffer containing 4% albumin. In the presence of 10, 20 and 30 mM glucose, addition of insulin stimulated net glycogen production by 52, 39 and 20%, respectively. 2 . 10(-9) M insulin was required for half-maximal stimulation. Increases of glycogen production and of glycogen synthase a activity were observed after 15-30 min of incubation with insulin. The stimulatory effect of insulin was additive to that of lithium. In agreement with the literature, insulin antagonized the inhibitory action of suboptimal doses of glucagon on glycogen deposition whereby a decrease of glucagon-elevated cyclic AMP levels was observed. In addition, we found that insulin also decreased the basal cyclic AMP levels in the absence of added glucagon by 22%. It is concluded that physiological concentrations of insulin stimulate net glycogen deposition in hepatocytes from fasted rats; the decrease of basal cyclic AMP levels upon insulin addition may play a role in the mechanism of the hormone action.  相似文献   

9.
Insulin stimulates autophosphorylation of the beta subunit of its receptor and activates the associated tyrosine kinase. This kinase, in turn, phosphorylates a number of specific protein substrates; however, the functional and structural identity of these substrates is largely unknown. In this study, we demonstrate that insulin also stimulates the phosphorylation of calmodulin by rat hepatocyte insulin receptors partially purified by wheat germ agglutinin affinity chromatography. Phosphorylation occurred predominantly on tyrosine residues and had an absolute requirement for insulin receptors, divalent cations, and certain basic proteins. Maximal 32P incorporation was observed at an insulin concentration of 5 X 10(-9) M, and the K0.5 for insulin was approximately 4 X 10(-10) M. Phosphorylation of calmodulin was dependent upon ATP, saturating at 100 microM ATP with a K0.5 of 30 microM. Insulin-stimulated phosphorylation of calmodulin was also dependent upon Mg2+ or Mn2+, but was approximately 12-fold greater in the presence of Mg2+. Maximal phosphorylation was observed in the absence of Ca2+ and was inhibited at Ca2+:EGTA ratios greater than 0.8 (0.16 microM free Ca2+). Certain basic proteins, such as polylysine, histone Hf2b, and protamine sulfate, were necessary to observe insulin-stimulated phosphorylation of calmodulin. The relative amount of insulin-stimulated phosphorylation of calmodulin observed in the presence of each of these proteins differed. Maximal insulin-stimulated phosphorylation was observed in the presence of polylysine. These data suggest that both Ca2+ and calmodulin may participate in the early post-receptor events in the cellular mechanism of insulin action in hepatocytes.  相似文献   

10.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

11.
Human growth-hormone-releasing hormone [(1-44)NH2] (hGHRH) was a potent stimulus for insulin release from rat islets of Langerhans in vitro; the optimum concentration used was 10(-11) M. The dose response curves for hGHRH effects on insulin secretion were notably different in intact islets of Langerhans compared to cultured dispersed islet cells. Pancreatic islets responded to a very low hGHRH concentration (10(-12) M), but at a higher hGHRH concentration (10(-9) M) no stimulation of insulin release was observed. When somatostatin antiserum was included in the incubation medium, hGHRH (10(-9) M) stimulated insulin release from intact islets. In cultured dispersed islet cells, which are principally insulin-secreting B cells, hGHRH directly and potently stimulated insulin release even at a concentration of 10(-9) M. Addition of somatostatin (10(-7), 10(-8) M) significantly reduced the hGHRH-induced insulin-secretory responses of dispersed islet cells. hGHRH (10(-11)-10(-9) M) raised islet cAMP levels; individually, hGHRH and theophylline exerted positive effects on insulin release, their combined effect was greater than that caused by either one. We conclude that hGHRH directly affects insulin secretion in vitro by a cAMP-dependent mechanism, and that the difference in responses of intact islets versus islet cells to increasing concentrations of hGHRH may be related to hGHRH-induced release of somatostatin in intact rat islets.  相似文献   

12.
I C Green  M Tadayyon 《Life sciences》1988,42(21):2123-2130
The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/micrograms islet protein. Indomethacin (2.8 X 10(-5) M), sodium salicylate (1.25 X 10(-3) M) and chlorpropamide (7.2 X 10(-5) M) all lowered islet PGE2 levels and stimulated insulin release in vitro. Dynorphin (1-13), stimulated insulin release at a concentration of 6 X 10(-9) M, while lowering islet PGE2. Conversely, at a higher concentration, (6 X 10(-7) M), dynorphin had no stimulatory effect on insulin secretion and did not lower PGE2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE2 (10(-5) M). PGE2 at a lower concentration (10(-9) M) did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE2 stimulated insulin release in the presence of 6mM glucose. Results from these experiments suggest that since an opioid peptide can lower endogenous PGE2 production in islets and since the stimulatory effects of the opioid peptide are reversed by exogenous PGE2 there may be interactions between these two modulators of insulin secretion.  相似文献   

13.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

14.
Insulin binds to its specific cell surface receptor in cultured human fibroblasts and also stimulates the conversion of glycogen synthase from the glucose-6-phosphate (G-6-P) dependent to the G-6-P independent form. Although these two processes are tightly coupled in most target tissues for insulin action, in the fibroblast a variety of findings question the relationship of these two events to one another. In human fibroblasts the amount of insulin required to displace half of the 125I-insulin bound to the insulin receptor is 4 ng/ml (6.6 X 10(-10)M), but the activation of glycogen synthase is not maximal until 1-10 micrograms/ml with an ED50 of 30 ng/ml insulin. Antibodies directed against the insulin receptor, which activate glycogen synthase in both fat and muscle, do not stimulate the activation of glycogen synthase in the fibroblast. Fab fragments from anti-insulin receptor antibody compete for insulin binding, but do not inhibit the insulin-stimulated rise in independent activity. The insulin-like growth factor, MSA, which is 1% as potent as insulin in stimulating glucose oxidation in rat fat cells and in inhibiting 125I-insulin binding to human fibroblasts, is 25% as potent as insulin in stimulating glycogen synthase. Proinsulin is 2-10% as potent as insulin, but behaves as a "partial agonist" of insulin action in the fibroblast, i.e. proinsulin is able to elicit only 60% of the maximal response of insulin in the glycogen synthase assay, even at high concentrations. Finally, cell lines from patients with clearly defective insulin receptors exhibit normal insulin dose response curves for the activation of glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Addition of porcine platelet-derived growth factor (PDGF) to quiescent cultures of Swiss 3T3 cells caused a marked, dose-dependent stimulation of Na+ influx and Na-K pump-mediated 86Rb+ uptake. Porcine PDGF (a single component in SDS polyacrylamide gels) stimulated ion fluxes to the same maximal extent as partially purified preparations, and exhibited half-maximal effect at 6 ng/ml (2 X 10(-10) M). Maximal effect was achieved at 30 ng/ml (10(-9) M). In the presence of insulin, PDGF elicited mitogenesis at comparable concentrations. PDGF stimulated ion uptake in a time-dependent fashion; maximal effect was obtained after 5 min of exposure to the growth factor. PDGF stimulates Na+ influx via an amiloride-sensitive pathway, suggesting that PDGF enhances the activity of a Na+/H+ antiport system. In accordance with this possibility, the mitogen caused an increase of intracellular pH by 0.15 pH units, as judged by the steady-state distribution of labelled 5,5-dimethyloxazolidine-2,4-dione (DMO). Porcine PDGF stimulated E-type prostaglandin synthesis and cAMP accumulation but these events could be dissociated from the stimulation of the ionic fluxes, which was detected within minutes and was not blocked by indomethacin. It is suggested that PDGF elicits multiple signals to stimulate cell proliferation in 3T3 cells.  相似文献   

16.
Glucocorticoids will enhance the growth of cultured human skin fibroblasts in serum-containing medium. In serum-free cultures hydrocortisone (5 X 10(-6) M) will enhance insulin stimulation of sugar transport and DNA synthesis (as measured by thymidine incorporation into trichloroacetic acid-precipitable material). The optimal concentration for the glucocorticoid effect on DNA synthesis was 5 X 10(-8) M for dexamethasone and 5 X 10(-7) M for hydrocortisone. In dexamethasone-treated cells, concentrations of insulin as low as 250 microU/ml (10 ng/ml) were effective in stimulating DNA synthesis. Further, hydrocortisone and dexamethasone (both at 5 X 10(-6) M) exhibited potentiating effects on insulin-stimulated sugar transport. These effects appeared to be mediated via inhibitory actions on the hexose transport system with the preservation of a functional insulin-receptor interaction resulting in insulin stimulation of deoxy-D-glucose transport at physiological insulin concentrations, 250 microU/ml (10 ng/ml). Hydrocortisone also enhanced specific [125I]insulin binding in these cells. The data indicate that the mechanism(s) of glucocorticoid enhancement of two actions of insulin may be different.  相似文献   

17.
Glucose uptake in human and animal muscle cells in culture   总被引:5,自引:0,他引:5  
Human muscle cells were grown in culture from satellite cells present in muscle biopsies and fusion-competent clones were identified. Hexose uptake was studied in fused myotubes of human muscle cells in culture and compared with hexose uptake in myotubes of the rat L6 and mouse C2C12 muscle cell lines. Uptake of 2-deoxyglucose was saturable and showed an apparent Km of about 1.5 mM in myotubes of all three cell types. The Vmax of uptake was about 6000 pmol/(min.mg protein) in human cells, 4000 pmol/(min.mg protein) in mouse C2C12 muscle cells, and 500 pmol/(min.mg protein) in L6 cells. Hexose uptake was inhibited approximately 90% by cytochalasin B in human, rat, and mouse muscle cell cultures. Insulin stimulated 2-deoxyglucose uptake in all three cultures. The hormone also stimulated transport of 3-O-methylglucose. The sensitivity to insulin was higher in human and C2C12 mouse myotubes (half-maximal stimulation observed at 3.5 X 10(-9) M) than in rat L6 myotubes (half-maximal stimulation observed at 2.5 X 10(-8) M). However, insulin (10(-6) M) stimulated hexose uptake to a larger extent (2.37-fold) in L6 than in either human (1.58-fold) or mouse (1.39-fold) myotubes. It is concluded that human muscle cells grown in culture display carrier-mediated glucose uptake, with qualitatively similar characteristics to those of other muscle cells, and that insulin stimulates hexose uptake in human cells. These cultures will be instrumental in the study of human insulin resistance and in investigations on the mechanism of action of antidiabetic drugs.  相似文献   

18.
The addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M) to isolated hepatocytes stimulated glycogen accumulation and this stimulation was more pronounced when the medium glucose was raised from 50 to 300 mg percent. Studies with [14C]-glucose showed a two-fold stimulation in glycogen synthesis by the addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M). A sixteen percent increase in the activity of glycogen synthase was observed in cells incubated for 10 minutes with insulin (4.0 × 10?11 M) or acetylcholine (10?6 M), whereas at one hour incubation a 40 percent increase in activity was observed with the same concentration of insulin or acetylcholine. The effects of insulin and acetylcholine were not additive.  相似文献   

19.
N2,O3-Diacylglucosamine 1-phosphate (lipid X), a monosaccharide precursor of Escherichia coli lipid A, was used to stimulate RAW 264.7 macrophage tumor cells, and the effects on macrophage phospholipid metabolism were examined. The addition of E. coli lipid X to the medium of cells that had been uniformly labeled with 32Pi resulted in a 4-8-fold increase in the level of lysophosphatidylinositol. This effect was maximal at 5 microM lipid X. Lysophosphatidylinositol levels reached a maximum 45 min after stimulation, followed by a gradual decline to near normal levels within 2 h. The formation of lysophosphatidylinositol was dependent upon extracellular calcium and was almost completely inhibited when cycloheximide was added at the time of stimulation. The addition of the disaccharide lipid A precursor IVA, commercial lipopolysaccharide (1 microgram/ml), phorbol 12-myristate 13-acetate (10(-7) M), or calcium ionophore A23187 (10(-6) M) to these cells resulted in a similar increase in lysophosphatidylinositol levels, but phosphatidic acid was inactive. The stimulation by IVA and phorbol myristate acetate was blocked by cycloheximide, but the stimulation by lipopolysaccharide was only partially blocked. The stimulation by A23187 was unaffected by cycloheximide. The increase in lysophosphatidylinositol levels might be related to the stimulation of arachidonate release and prostaglandin synthesis that is also observed in cells treated with lipid A precursors. The disaccharide precursor, IVA, was at least 100 times more effective than lipid X at stimulating lysophosphatidylinositol formation and prostaglandin release. The relative ability of lipid X and IVA to stimulate these cells correlated well with their effects on other lipopolysaccharide-responsive systems. Macrophage tumor cells also had the ability to inactivate lipid X by dephosphorylating it.  相似文献   

20.
Actions of PGE1 and indomethacin on electrically induced vasoconstriction in isolated ear arteries of rabbits were studied. PGE1 (8.5 X 10(-9) M) reduced the vasoconstriction; this inhibition was inversely related to the rate of stimulation. Indomethacin (1.5 X 10(-6) M) potentiated the constrictor responses to nerve stimulation. The degree of this potentiation was also frequency-dependent being greater at low (1 - 2 HZ) than at high (8 - 16 HZ) rate of stimulation. These findings support the view that prostaglandins, in addition to their action on vascular smooth muscle cells, play a functional role in the regulation of tone of the rabbit ear artery by a negative feed-back control of adrenergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号