首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly-3-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) was produced using a co-culture of activated sludge. When butyric acid was used as sole carbon source, PHB was produced. When valeric acid was added to the medium, PHBV was produced. The 3-hydroxyvalerate (3HV) mole fraction in the PHBV reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV units in the co-polymer increased from 0.0 to 54.0 mol%, the melting temperature ( T m ) decreased from 178 to 99°C. The composition, and hence the mechanical properties, of the co-polymer produced by activated sludge can be controlled by adjusting the medium composition.  相似文献   

2.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

3.
3-Hydroxybutyrate-3-hydroxyvalerate (3HB-3HV) as well as 3-hydroxybutyrate-4-hydroxybutyrate (3HB-4HB) copolyesters have been investigated by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical spectroscopy, over a wide range of compositions (0-95 mol% 3HV; 0-82 mol% 4HB). Both series of isolated copolyesters are partially crystalline at all compositions. Quenched samples show a glass transition that decreases linearly with increasing co-monomer molar fraction, more markedly when the co-monomer is 4HB. Above Tg, all copolyesters, rich in 3HB units, show a cold crystallization phenomenon followed by melting, while at the other end crystallization on heating is observed only in 3HB-3HV copolymers. The viscoelastic spectrum, strongly affected by thermal history, shows two relaxation regions: the glass transition, whose location depends on copolymer type and composition, and a secondary dispersion region at low temperatures (-130/-80 degrees C). The latter results from a water-related relaxation analogous to that of P(3HB) and, in 3HB-4HB copolymers, from another overlapping absorption peak centered at -130 degrees C, attributed to local motion of the methylene groups in the linear 4HB units.  相似文献   

4.
5.
Polyhydroxyalkanoates (PHAs) are a replacement of conventional single-use plastics. Bioprocess conditions of the extreme halophilic archaeon Halogeometricum borinquense strain RM-G1 were selected resulting in the synthesis of 66.80 ± 1.69 % PHA (of cell dry mass) in 72 h using glycerol and tryptone as carbon and nitrogen sources respectively, yielding volumetric productivity of 0.206 ± 0.006 gL−1 h−1 in a repeated batch process in a small-scale bioreactor where 20 % of the production medium was used as the inoculum for the subsequent batch. The purified PHA was characterized as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 10.21 mol% 3-hydroxyvalerate content possessing glass transition temperature -12.6 °C, degradation temperature 285 °C, number average molecular weight 156,899 Da, weight average molecular weight 288,723 Da, polydispersity index 1.8 and melting temperatures 139.1 °C and 152.5 °C. Maximum (21.7 ± 0.6 L m-2 h−1) and average (17.2 ± 0.6 L m-2 h−1) flux values were their respective highest and crystallization time was its least (3.0 ± 0.16 h) when ΔT was 90 °C and polytetrafluoroethylene membrane was applied for desalination of the bioreactor effluent by Direct Contact Membrane Distillation. While using polyvinylidene fluoride membrane, maximum 25.5 ± 0.5 L m-2 h−1 and average 18.6 ± 0.2 L m-2 h−1 fluxes were obtained and crystallization time decreased (3.25 ± 0.16 h) even when ΔT was lowered by 20 °C.  相似文献   

6.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) degrading thermophilic fungus was isolated from soil sample collected from waste disposal site, Islamabad, Pakistan. It was able to grow efficiently on a medium containing PHBV as a sole source of carbon and has been identified as Aspergillus sp. NA-25 by 18S rRNA. Using 9% of inoculum maximum production of PHBV depolymerase was observed at 45°C, pH 7.0 in the presence of 0.2% lactose as an additional carbon source. PHBV depolymerase was purified by precipitation with 80% ammonium sulfate and gel filtration chromatography on Sephadex G-75. The four enzyme forms obtained after gel filtration were analyzed on SDS-PAGE and their molecular weights (36, 68, 72 and 90 kDa) were determined. They were characterized on the basis of effect of different temperatures, pH, metal ions and different reagents on the PHBV activity and stability. It is obvious that the fungal strain Aspergillus sp. NA-25 is capable of degrading PHBV with the help of different types of depolymerases.  相似文献   

8.
9.
A strain of Escherichia coli was metabolically engineered to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) of specified composition between 5% and 18% HV. A gene encoding propionyl-CoA synthetase (prpE from S. enterica) was placed under the control of the IPTG-inducible tac promoter (P(taclacUV5)) while the polyhydroxyalkanoate synthesis operon (phaBCA) from R. eutropha was expressed constitutively. A strain of E. coli harboring both plasmids was grown in defined medium and PHBV was produced with specified hydroxyvalerate (HV) molar content between 5% and 18%. The molecular weight of the copolymer was approximately 700,000 across various HV contents, and average polydispersity was approximately 1.3. The majority of the PHBV production occurred during the late exponential/stationary phase. The HV content of the copolymer generally peaked early in the incubation before falling to its final value. We found that the time profiles of PrpE activity, propionyl-CoA, and acetyl-CoA were well correlated to the HV content time profile. Despite an abundance of propionyl-CoA, incorporation of HV into the copolymer was inefficient. Therefore, both the PHA operon and conditions affecting the availability of propionyl-CoA must be chosen carefully to achieve the desired HV content. The ability to engineer copolymer composition control into an E. coli strain would be useful in cases where the feedstock composition is not adjustable.  相似文献   

10.
The graft copolymerization of 2-hydroxyethylmethacrylate (HEMA) onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) films has been investigated. The graft copolymerization was conducted in aqueous media using benzoyl peroxide (BPO) as chemical initiator. PHBHV films were prepared by solvent casting. Different parameters affecting the graft yield were studied such as monomer concentration, initiator concentration, and reaction time. The extent of grafting has been modulated by the preparation conditions, in particular the concentration of HEMA. However, it is interesting to note that the initiator concentration had only a slight influence on the graft yield. Characterization of the grafted PHBHV films assumed that the graft copolymerization not only occurred on the film surface but also took place into the film bulk. Differential scanning calorimetry showed that crystallinity dramatically decreased with increasing graft yield, indicating that graft copolymerization hindered the crystallization process. Wettability has been obviously improved by grafting a hydrophilic monomer such as HEMA for high graft yield (>130%).  相似文献   

11.
Journal of Applied Phycology - Poly-3-hydroxybutyrate-co-hydroxyvalerate [P(HB-co-HV)] co-polymer has superior material properties than poly-3-hydroxybutyrate (PHB) and hence exhibits wide...  相似文献   

12.
The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.  相似文献   

13.

Polyhydroxyalkanoate (PHA) is a family of biodegradable polymers, and incorporation of different monomers can alter its physical properties. To produce the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) containing a high level of 3-hydroxyvalerate (3HV) by altering acetyl-CoA pool levels, we overexpressed an acetyl-CoA acetyltransferase (atoAD) in an engineered E. coli strain, YH090, carrying PHA synthetic genes bktB, phaB, and phaC. It was found that, with introduction of atoAD and with propionate as a co-substrate, 3HV fraction in PHA was increased up to 7.3-fold higher than a strain without atoAD expressed in trans (67.9 mol%). By the analysis of CoA pool concentrations in vivo and in vitro using HPLC and LC-MS, overexpression of AtoAD was shown to decrease the amount of acetyl-CoA and increase the propionyl-CoA/acetyl-CoA ratio, ultimately resulting in an increased 3HV fraction in PHA. Finally, synthesis of P(3HB-co-3HV) containing 57.9 mol% of 3HV was achieved by fed-batch fermentation of YJ101 with propionate.

  相似文献   

14.
The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0–90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.  相似文献   

15.
The biosynthesis of polyhydroxyalkanoate copolymers in Escherichia coli from unrelated carbon sources becomes attractive nowadays. We previously developed a poly(hydroxybutyrate-co-hydroxyvalerte) (PHBV) biosynthetic pathway from an unrelated carbon source via threonine metabolic route in E. coli (Chen et al., Appl Environ Microbiol 77:4886-4893, 2011). In our study, a citramalate pathway was introduced in recombinant E. coli by cloning a cimA gene from Leptospira interrogans. By blocking the pyruvate and the propionyl-CoA catabolism and replacing the β-ketothiolase gene, the PHBV with 11.5 mol% 3HV fraction was synthesized. Further, the combination of citramalate pathway with the threonine biosynthesis pathway improved the 3HV fraction in PHBV copolymer to 25.4 mol% in recombinant E. coli.  相似文献   

16.
The purpose of this study was to evaluate hybrid poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/chitosan nanofibrous mats as scaffolds for skin engineering. In vitro studies were carried out to test the potential of the scaffolds for fibroblasts adhesion, viability, and proliferation (L929 cell line). The in vivo performance was also studied in a full-thickness wound healing model. PHBV/chitosan 4:1 (w/w) exhibited a higher in vitro biocompatibility and a better ability for cell adhesion and growth, compared to PHBV/chitosan 2:3 (w/w). The in vivo assay also revealed the better performance of this scaffold, improving the wound healing process in rats.  相似文献   

17.
The process for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB/V)] by bacterial fermentation and its recovery was analysed. The effects of various factors such as P(3HB/V) content, P(3HB/V) productivity, P(3HB/V) yield and 3-hydroxyvalerate (3HV) fraction in P(3HB/V) on the production cost of P(3HB/V) were examined. The increase in the 3HV yield on a carbon source did not significantly decrease the production cost when the 3HV fraction was 10 mol%, because the cost of the carbon substrate for 3HV was relatively small in terms of the total cost. However, at a 3HV fraction of 30 mol%, the 3HV yield on a carbon source had a significant effect on the total P(3HB/V) production cost. The production cost of P(3HB/V) increased linearly with the increase in the 3HV fraction in P(3HB/V). Received: 8 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

18.
Caldimonas taiwanensis accumulated polyhydroxybutyrate (PHB) at 55 °C from gluconate, fructose, maltose, and glycerol under nitrogen-limited condition. The PHB content peaked at 14 h after inoculation from gluconate. C. taiwanensis did not grow or accumulate PHA from fatty acids as the sole carbon source; however, it incorporated 3-hydroxyvalerate (3-HV) into PHB polymer from gluconate and valerate as a mixed carbon source. By adjusting the valerate concentration, the molar fraction of 3-HV could be modulated from 10 mol% to 95 mol%. Fatty acid valerate substantially inhibited cell growth and PHA accumulation with the addition of as little as 5 mM to the medium. Supplementing the medium with yeast extract overcame the inhibition, which enhanced not only the yield of biomass but also PHA productivity. The in vivo substrate specificity of PHA synthase ranged from C4 to C6. In addition, C. taiwanensis also incorporated a wide range of 3-HV into PHA from soluble starch and valerate as a mixed carbon source. Food-grade starches made from cassava, corn, potato, sweet potato and wheat respectively mixed with valerate were studied for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production. In this study, C. taiwanensis exhibited high promise for reducing the production cost of P(3HB-co-3HV).  相似文献   

19.
Poly(hydroxyalkanoates) are natural polymers with thermoplastic properties. One polymer of this class with commercial applicability, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be produced by bacterial fermentation, but the process is not economically competitive with polymer production from petrochemicals. Poly(hydroxyalkanoate) production in green plants promises much lower costs, but producing copolymer with the appropriate monomer composition is problematic. In this study, we have engineered Arabidopsis and Brassica to produce PHBV in leaves and seeds, respectively, by redirecting the metabolic flow of intermediates from fatty acid and amino acid biosynthesis. We present a pathway for the biosynthesis of PHBV in plant plastids, and also report copolymer production, metabolic intermediate analyses, and pathway dynamics.  相似文献   

20.
Lu Q  Han J  Zhou L  Zhou J  Xiang H 《Journal of bacteriology》2008,190(12):4173-4180
The haloarchaeon Haloferax mediterranei has shown promise for the economical production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a desirable bioplastic. However, little is known at present about the genes involved in PHBV synthesis in the domain Archaea. In this study, we cloned the gene cluster (phaEC(Hme)) encoding a polyhydroxyalkanoate (PHA) synthase in H. mediterranei CGMCC 1.2087 via thermal asymmetric interlaced PCR. Western blotting revealed that the phaE(Hme) and phaC(Hme) genes were constitutively expressed, and both the PhaE(Hme) and PhaC(Hme) proteins were strongly bound to the PHBV granules. Interestingly, CGMCC 1.2087 could synthesize PHBV in either nutrient-limited medium (supplemented with 1% starch) or nutrient-rich medium, up to 24 or 18% (wt/wt) in shaking flasks. Knockout of the phaEC(Hme) genes in CGMCC 1.2087 led to a complete loss of PHBV synthesis, and only complementation with the phaEC(Hme) genes together (but not either one alone) could restore to this mutant the capability for PHBV accumulation. The known haloarchaeal PhaC subunits are much longer at their C termini than their bacterial counterparts, and the C-terminal extension of PhaC(Hme) was proven to be indispensable for its function in vivo. Moreover, the mixture of purified PhaE(Hme)/PhaC(Hme) (1:1) showed significant activity of PHA synthase in vitro. Taken together, our results indicated that a novel member of the class III PHA synthases, composed of PhaC(Hme) and PhaE(Hme), accounted for the PHBV synthesis in H. mediterranei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号