首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of hydroxamates was obtained by the reaction of N-(4-nitrobenzyl)-L-alanine with alkyl/arylsulfonyl halides, followed by conversion of the COOH group into CONHOH. Structurally-related compounds were prepared similarly by using arylsulfonyl isocyanates, aryl isocyanates or arylsulfenyl halides instead of the sulfonyl halides. Many of the new compounds showed nanomolar affinity for the bacterial collagenase isolated from the pathogen Clostridium histolyticum.  相似文献   

2.
Novel matrix metalloproteinase (MMP)/bacterial collagenase inhibitors are reported, considering the sulfonylated amino acid hydroxamates as lead molecules. A series of compounds was prepared by reaction of arylsulfonyl isocyanates with N-(5H-dibenzo[a,d]cyclohepten-5-yl)- and N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl) methyl glycocolate, respectively, followed by the conversion of the COOMe to the carboxylate/hydroxamate moieties. The corresponding derivatives with methylene and ethylene spacers between the polycyclic moiety and the amino acid functionality were also obtained by related synthetic strategies. These new compounds were assayed as inhibitors of MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from Clostridium histolyticum (ChC). Some of the new derivatives reported here proved to be powerful inhibitors of the four MMPs mentioned above and of ChC, with activities in the low nanomolar range for some of the target enzymes, depending on the substitution pattern at the sulfonylureido moiety and on the length of the spacer through which the dibenzosuberenyl/suberyl group is connected with the rest of the molecule. Several of these inhibitors also showed selectivity for the deep pocket enzymes (MMP-2, MMP-8 and MMP-9) over the shallow pocket ones MMP-1 and ChC.  相似文献   

3.
A series of hydroxamates was prepared by reaction of alkyl/arylsulfonyl halides with N-2-chlorobenzyl-L-alanine, followed by conversion of the COOH moiety to the CONHOH group, with hydroxylamine in the presence of carbodiimides. Other structurally related compounds were obtained by reaction of N-2-chlorobenzyl-L-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by the similar conversion of the COOH into the CONHOH moiety. The new compounds were assayed as inhibitors of the Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a bacterial zinc metallo-peptidase which degrades triple helical collagen as well as a large number of synthetic peptides. The prepared hydroxamate derivatives proved to be 100-500 times more active collagenase inhibitors than the corresponding carboxylates. Substitution patterns leading to best ChC inhibitors (both for carboxylates as well as for the hydroxamates) were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl; 3- and 4-protected-aminophenylsulfonyl-; 3- and 4-carboxyphenylsulfonyl-; 3-trifluoromethyl-phenylsulfonyl; as well as 1- and 2-naphthyl-, quinoline-8-yl- or substituted-arylsulfonylamidocarboxyl moieties among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P2' and P3' sites, in order to achieve tight binding to the enzyme. This study also proves that the 2-chlorobenzyl moiety, investigated here for the first time, is an efficient P2' anchoring moiety for obtaining potent ChC inhibitors.  相似文献   

4.
Matrix metalloproteinase (MMP)/bacterial collagenase inhibitors incorporating 5-amino-2-mercapto-1,3,4-thiadiazole zinc binding functions are reported. A series of compounds was prepared by reaction of arylsulfonyl isocyanates or arylsulfonyl halides with phenylalanyl-alanine, followed by coupling with 5-amino-2-mercapto-1,3,4-thiadiazole in the presence of carbodiimides. These new compounds were assayed as inhibitors of human MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from the anaerobe Clostridium histolyticum (ChC). The new derivatives proved to be powerful inhibitors of these metalloproteases, with activities in the low micromolar range for some of the target enzymes, depending on the substitution pattern at the arylsulfonyl(ureido) moieties.  相似文献   

5.
A set of bisphosphonate matrix metalloproteinase (MMP) inhibitors was investigated for inhibitory activity against several carbonic anhydrase (CA, EC 4.2.1.1) isozymes, some of which are overexpressed in hypoxic tumors. Some of the bisphosphonate revealed to be very potent inhibitors (in the low nanomolar range) of the cytosolic isoform CA II and the membrane-bound CA IX, XII and XIV isozymes, a feature useful for considering them as interesting compounds for bone resorption inhibition applications. We suggest here that it is possible to develop dual enzyme inhibitors bearing bisphosphonate moieties that may target both MMPs and CAs, two families of enzymes involved in tumor formation, growth, and metastasis.  相似文献   

6.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.  相似文献   

7.
Three series of derivatives have been prepared by reaction of sulfanilylaminoguanidine with pyrylium salts, with the pyridinium derivatives of glycine and with the pyridinium derivatives of beta-alanine, respectively. The new compounds were assayed as inhibitors of two serine proteases, thrombin and trypsin. The study showed that in contrast to the leads, possessing KI's around 100-300 nM against thrombin, and 450-1420 nM against trypsin, respectively, the new derivatives showed inhibition constants in the range of 15-50 nM against thrombin, whereas their affinity for trypsin remained relatively low. Derivatives of beta-alanine were more active than the corresponding glycine derivatives, which in turn were more inhibitory than the pyridinium derivatives of sulfanilylaminoguanidine possessing the same substitution pattern at the pyridinium ring. Thus, the present study proposes two novel approaches for the preparation of high affinity, specific thrombin inhibitors: a novel S1 anchoring moiety in the already large family of arginine/amidine-based inhibitors, i.e., the SO2NHNHC(=NH)NH2 group, and novel non-peptidomimetic scaffolds obtained by incorporating alkyl-/aryl-substituted-pyridinium moieties in the hydrophobic binding site(s). The first one is important for obtaining bioavailable thrombin inhibitors, devoid of the high basicity of the commonly used arginine/amidine-based inhibitors, whereas the second one may lead to improved water solubility of such compounds.  相似文献   

8.
Structure activity relationships are described for a series of succinyl hydroxamic acids 4a-o as potent and selective inhibitors of matrix metalloprotease-3 (stromelysin-1). Optimisation of P1' and P3' groups gave compound 4j (MMP-3 IC50=5.9nM) which was >140-fold less potent against MMP-1 (IC50=51,000nM), MMP-2 (IC50=1790nM), MMP-9 (IC50=840nM) and MMP-14 (IC50=1900nM).  相似文献   

9.
Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with KI values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with KI values in the range 10-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly His, beta-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i.e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   

10.
A quantitative structure-activity relationship (QSAR) study is made on some hydroxamic acid-based inhibitors of matrix metalloproteinases (MMPs) and a bacterial collagenase, namely Clostridium histolyticum collagenase (ChC), that also belongs to an MMP family, M-31, using Kier's valence molecular connectivity index (1)chi(v) of the substituents and electrotopological state (E-state) indices of some atoms. The results indicate that out of the four MMPs (MMP-1, MMP-2, MMP-8, and MMP-9) studied, MMP-2 and MMP-9 can be structurally quite similar, but widely differing from MMP-1 and MMP-8 and ChC. For MMP-2 and MMP-9, the inhibition activity of compounds is shown to depend on both (1)chi(v )and E-state indices, while for MMP-1 and MMP-8 it is shown to depend only on E-state indices and for ChC only on (1)chi(v). However, in all the cases, an aromatic group like C(6)F(5) or 3-CF(3)-C(6)H(4) attached to SO(2) moiety in the compounds is indicated to be equally beneficial, due to probably the involvement of fluorine atom(s) in charge-charge interactions with the Zn(2+) ion of the enzymes or in the formation of the hydrogen bonds with some sites of the receptors.  相似文献   

11.
A series of compounds has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonylisocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyldicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (K1 of 3 microM against thrombin, and 15 microM against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition constants of 9 nM against thrombin and 1400 nM against trypsin. pKa measurements showed that the new derivatives reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Molecular mechanics calculations showed that the preferred tautomeric form of these compounds is of the type ArSO2N=C(NH2) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.  相似文献   

12.
A quantitative structure-activity relationship (QSAR) study has been made on the inhibitions of some matrix metalloproteinases (MMPs) by functionalized 4-aminoproline based hydroxamates. Attempts have been made to correlate the inhibition potencies of these hydroxamates with Kier's first-order valence molecular connectivity index ((1)chi(v)) of substituents and electrotopological state (E-state) indices of some atoms. The correlations obtained for the inhibitions of all the enzymes studied, i.e. MMP-1, MMP-2, MMP-3, MMP-7, and MMP-13, were not so uniform, but suggested that in almost all the cases the substituents at the amide nitrogen may be conducive to the activity, though the whole amide group may be sterically unfavourable. Similarly, in most of the cases, the substituens at the phenyl moiety have been found to be beneficial to the inhibition potency and in many cases an electronic role of SO(2) group of the sulfonylphenyl moiety has been indicated.  相似文献   

13.
The first example of dual inhibitors for matrix metalloproteinase (MMP) and cathepsin is described. An appropriate alignment of peptide-parts and two different specific functional groups in one molecule led to the discovery of a potent dual inhibitor (3a).  相似文献   

14.
15.
Novel sulfonamide matrix metalloproteinase inhibitors of general formula (9) were synthesised by a route involving a stereoselective conjugate addition reaction. Enzyme selectivity was found to be dependant on the nature of the sulfonamide substituents. Compounds (9f, 9q) are potent selective collagenase inhibitors with good oral bioavailability.  相似文献   

16.
17.
Here we report molecular dynamics (MD) and free energy perturbation (FEP) simulations applied to hydroxamate-matrix metalloproteinase-2 (MMP-2) complex systems. We have developed some new force field parameters for the hydroxamate functional group that were not included in the AMBER94 force field but were necessary in our simulations. For the representation of the active zinc center, a bonded model was adopted in which restrained electrostatic potential fitting (RESP) charges were used as the electrostatic representation of this model. Using the resulted bonded model, FEP simulations predict the relative binding free energy in good agreement with the experimental value. By analyzing the molecular dynamics (MD) trajectories of the two complex systems, we can provide an explanation of why one of the two inhibitors is favored over the other. The results provide a chemical insight into the interactions between inhibitor and enzyme, and can indicate changes in the inhibitor that would enhance inhibitor–enzyme interactions.Figure The scheme of the binding site  相似文献   

18.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

19.
Several macrocyclic, hydroxamate derivatives were synthesized and evaluated as inhibitors of matrix metalloproteinases (MMPs) and tumour necrosis factor-alpha (TNF-alpha) production. These macrocycles are anti-succinate based inhibitors linked from P1 to P2'. A variety of functionality was installed at the P1-P2' linkage, which gave inhibitors that displayed excellent MMP inhibition and good TNF-alpha suppression.  相似文献   

20.
Dipeptidyl Peptidase-IV (DPP-4) is a validated therapeutic target for type 2 diabetes. Aiming to interact with both residues Try629 and Lys554 in S2′ site, a series of novel uracil derivatives 1al and 2ai incorporating benzoic acid moieties at the N3 position were designed and evaluated for their DPP-4 inhibitory activity. Structure-activity relationships (SAR) study led to the identification of the optimal compound 2b as a potent and selective DPP-4 inhibitor (IC50?=?1.7?nM). Docking study revealed the additional salt bridge formed between the carboxylic acid and primary amine of Lys554 has a key role in the enhancement of the activity. Furthermore, compound 2b exhibited no cytotoxicity in human hepatocyte LO2 cells up to 50?μM. Subsequent in vivo evaluations revealed that the ester of 2b robustly improves the glucose tolerance in normal mice. The overall results have shown that compound 2b has the potential to a safe and efficacious treatment for T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号