首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

2.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.  相似文献   

3.
Women have been shown to use more intramuscular triacylglycerol (IMTG) during exercise than men. To investigate whether this could be due to sex-specific regulation of hormone-sensitive lipase (HSL) and to use sex comparison as a model to gain further insight into HSL regulation, nine women and eight men performed bicycle exercise (90 min, 60% Vo(2peak)), and skeletal muscle HSL expression, phosphorylation, and activity were determined. Supporting previous findings, basal IMTG content (P < 0.001) and net IMTG decrease during exercise (P < 0.01) were higher in women than in men and correlated significantly (r = 0.72, P = 0.001). Muscle HSL mRNA (80%, P = 0.11) and protein content (50%, P < 0.05) were higher in women than in men. HSL total activity increased during exercise (47%, P < 0.05) but did not differ between sexes. Accordingly, HSL specific activity (HSL activity per HSL protein content) increased during exercise (62%, P < 0.05) and was generally higher in men than in women (82%, P < 0.05). A similar pattern was observed for HSL Ser(659) phosphorylation, suggesting a role in regulation of HSL activity. Likewise, plasma epinephrine increased during exercise (P < 0.05) and was higher in men than in women during the end of the exercise bout (P < 0.05). We conclude that, although HSL expression and Ser(659) phosphorylation in skeletal muscle during exercise is sex specific, total muscle HSL activity measured in vitro was similar between sexes. The higher basal IMTG content in women compared with men is therefore the best candidate to explain the higher IMTG net hydrolysis during exercise in women.  相似文献   

4.
5.
The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels.  相似文献   

6.
The activity of lipoprotein lipase (LPL) in the heart, diaphragm, and soleus muscles was markedly increased in cold-acclimated rats and it was even greater in rats treated with oxytetracycline (OTC) while exposed to cold. Other skeletal muscles studied had low and variable activities which were not significantly increased by cold acclimation or by cold plus OTC treatment. It appears therefore that, apart from the heart and the muscles involved in respiratory movements, LPL activity is primarily associated with those muscles which contain a predominance of slow-twitch oxidative fibers, and that the enzyme in muscle, heart, and diaphragm responds to cold acclimation and cold plus OTC treatment in a parallel fashion in these tissues.  相似文献   

7.
8.
Vasodilatory mechanisms in contracting skeletal muscle.   总被引:11,自引:0,他引:11  
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within approximately 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.  相似文献   

9.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and free AMP contents and plasma epinephrine and insulin concentrations. HSL activity increased from resting levels by 10 min of exercise (from 2.09 +/- 0.19 to 2.56 +/- 0.22 mmol. min-1x kg dry mass-1, P < 0.05), increased further by 60 min (to 3.12 +/- 0.27 mmol x min-1x kg dry mass-1, P < 0.05), and decreased to near-resting rates after 120 min of cycling. Skeletal muscle LCFA CoA increased (P < 0.05) above rest by 60 min (from 15.9 +/- 3.0 to 50.4 +/- 7.9 micromol/kg dry mass) and increased further by 120 min. Estimated free AMP increased (P < 0.05) from rest to 60 min and was approximately 20-fold greater than that at rest by 120 min. Epinephrine was increased above rest (P < 0.05) at 60 (1.47 +/- 0.15 nM) and 120 min (4.87 +/- 0.76 nM) of exercise. Insulin concentrations decreased rapidly and were lower than resting levels by 10 min and continued to decrease throughout exercise. In summary, HSL activity was increased from resting levels by 10 min, increased further by 60 min, and decreased to near-resting values by 120 min. The increased HSL activity at 60 min was associated with the stimulating effect of increased epinephrine and decreased insulin levels. After 120 min, the decreased HSL activity was associated with the proposed inhibitory effects of increased free AMP. The accumulation of LCFA CoA in the 2nd h of exercise may also have reduced the flux through HSL and accounted for the reduction in IMTG utilization previously observed late in prolonged exercise.  相似文献   

10.
11.
Lipoprotein lipase (LPL) is a key enzyme for fatty acid and lipoprotein metabolism in muscle. However, the effect of aging on LPL regulation in skeletal muscle is unknown. We report the effect of aging on LPL regulation in the soleus (red oxidative postural) muscle and the tibialis anterior (white glycolytic non-weight-bearing) muscle in 4- and 24-mo-old Fischer 344 rats and 18- and 31-mo-old Fischer 344 x Brown-Norway F1 (F-344 x BN F1) rats. Total and heparin-releasable LPL (HR-LPL) activities were decreased 38% (P < 0.01) and 52% (P < 0.05), respectively, in the soleus muscle of the older Fischer 344 rats. There was a 32% reduction (P < 0.05) of total LPL protein mass in the soleus muscle with aging. The results were confirmed in another strain. A decrease of total LPL activity (-50%, P < 0.05) was also found in the soleus muscle between 18- and 31-mo-old F-344 x BN F1 rats. LPL mRNA concentration in the soleus muscle was not different between ages. Total LPL protein mass was reduced by 46% (P < 0.05) in the soleus muscle of the 31-mo-old F-344 x BN F1 rats. In the tibialis anterior muscle, neither LPL activity nor mRNA concentration was affected by age in either strain. In conclusion, LPL regulation in a non-weight-bearing muscle was not affected by aging. However, there was a pronounced reduction in LPL activity and LPL protein mass in postural muscle with aging.  相似文献   

12.
13.
14.
The sterility of hormone-sensitive lipase (HSL) knockout mice clearly shows the link between lipid metabolism and spermatogenesis. However, which substrate or product of this multifunctional lipase affects spermatogenesis is unclear. We found that an HSL protein with a His-tag at the N-terminus preserved the normal hydrolase activity of cholesteryl ester (CE) but the triglyceride lipase (TG) activity significantly decreased in vitro. Therefore, mice with this functionally incomplete HSL (His-HSL) were produced on a background of HSL deficiency (HSL−/−h). As a result, HSL−/−h testis has an 8.65-fold higher CE activity than wild-type testis but a twofold higher TG activity than wild-type testis. To compare His-HSL and wild-type HSL in vitro and in vivo, we confirmed that the His-tag significantly suppressed HSL TG activity. From our results, we believe that TG activity was affected by the His-tag insertion, but CE activity was not influenced. Furthermore, the His-tag protected HSL from binding to the inhibitor BAY. From our study, TG activity and BAY binding sites were affected by N-terminal His-tag insertion.  相似文献   

15.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   

16.
The presence and role of hormone-sensitive lipase in heart muscle.   总被引:3,自引:1,他引:3       下载免费PDF全文
Hormone-sensitive lipase (HSL) catalyses the initial, rate-limiting, reaction in adipose-tissue lipolysis. Hormone-stimulated lipolytic activity has also been observed in the heart, where endogenous triacylglycerol is the major energy store. However, the identity of the intracellular lipase responsible has yet to be established. We have partially purified a neutral lipase from bovine heart muscle and compared its properties with those of HSL from bovine adipose tissue. The heart lipase has the same subunit Mr as HSL, is immunoprecipitated by antiserum raised against purified HSL and is phosphorylated by cyclic AMP-dependent protein kinase, apparently at the same site as HSL (as judged by h.p.l.c. of tryptic phosphopeptides). Phosphorylation of the heart lipase was found to result in increased enzyme activity, demonstrating the lipase's potential to respond to hormonal stimuli. The heart lipase was shown to be present in myocytes by its immunoprecipitation from homogenates of rat myocytes by anti-HSL antiserum. These findings are consistent with the conclusion that HSL is responsible for intracellular lipolysis in heart.  相似文献   

17.
Sympathetic alpha-adrenergic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis). We tested the hypothesis that combined inhibition of nitric oxide (NO) and prostaglandins (PGs) restores sympathetic vasoconstriction in contracting human muscle. We measured forearm blood flow via Doppler ultrasound and calculated the reduction in forearm vascular conductance in response to alpha-adrenergic receptor stimulation during rhythmic handgrip exercise (6.4 kg) and during a control nonexercise vasodilator condition (using intra-arterial adenosine) before and after combined local inhibition of NO synthase (NOS; via N(G)-nitro-L-arginine methyl ester) and cyclooxygenase (via ketorolac) in healthy men. Before combined inhibition of NO and PGs, the forearm vasoconstrictor responses to intra-arterial tyramine (which evoked endogenous noradrenaline release), phenylephrine (a selective alpha1-agonist), and clonidine (an alpha2-agonist) were significantly blunted during exercise compared with adenosine treatment. After combined inhibition of NO and PGs, the vasoconstrictor responses to all alpha-adrenergic receptor stimuli were augmented by approximately 10% in contracting muscle (P <0.05), whereas the responses to phenylephrine and clonidine were also augmented by approximately 10% during passive vasodilation in resting muscle (P <0.05). In six additional subjects, PG inhibition alone did not alter the vasoconstrictor responses in resting or contracting muscles. Thus in light of our previous findings, it appears that inhibition of either NO or PGs alone does not affect functional sympatholysis in healthy humans. However, the results from the present study indicate that combined inhibition of NO and PGs augments alpha-adrenergic vasoconstriction in contracting muscle but does not completely restore the vasoconstrictor responses compared with those observed during passive vasodilation in resting muscle.  相似文献   

18.
Rapid assay for hormone-sensitive lipase activity of adipose tissue   总被引:1,自引:0,他引:1  
A highly specific and rapid assay for hormone-sensitive lipase activity of rat adipose tissue is described. The method employs emulsified 2,3-di-O-oleyl-[9,10-(3)H(2)]oleoyl glycerol as a substrate; it is very sensitive and is suitable for serial sampling.  相似文献   

19.
The T-SR junction in contracting single skeletal muscle fibers   总被引:10,自引:2,他引:10       下载免费PDF全文
The junction between the T system and sarcoplasmic reticulum (SR) of frog skeletal muscle was examined in resting and contracting muscles. Pillars, defined as pairs of electron-opaque lines bounding an electron- lucent interior, were seen spanning the gap between T membrane and SR. Feet, defined previously in images of heavily stained preparations, appear with electron-opaque interiors and as such are distinct from the pillars studied here. Amorphous material was often present in the gap between T membrane and SR. Sometimes the amorphous material appeared as a thin line parallel to the membranes; sometimes it seemed loosely organized at the sites where feet have been reported. Resting single fibers contained 39 +/- 14.3 (mean +/- SD; n = 9 fibers) pillars/micrometer2 of tubule membrane. Single fibers, activated by a potassium-rich solution at 4 degrees C, contained 66 +/- 12.9 pillars/micrometer2 (n = 8) but fibers contracting in response to 2 mM caffeine contained 33 +/- 8.6/micrometer2 (n = 5). Pillar formation occurs when fibers are activated electrically, but not when calcium is released directly from the SR; and so we postulate that pillar formation is a step in excitation-contraction coupling.  相似文献   

20.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号