首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen isotope composition of CO(2) respired by Ricinus communis leaves (delta(18)O(R)) was measured under non-steady-state conditions with a temporal resolution of 3 min using a tunable diode laser (TDL) absorption spectrometer coupled to a portable gas exchange system. The SD of delta(18)O measurement by the TDL was +/- 0.2 per thousand and close to that of traditional mass spectrometers. Further, delta(18)O(R) values at isotopic steady state were comparable to those obtained using traditional flask sampling and mass spectrometric techniques for R. communis grown and measured in similar environmental conditions. As well as higher temporal resolution, the online TDL method described here has a number of advantages over mass spectrometric techniques. At isotopic steady state among plants grown at high light, the "one-way flux" model was required to accurately predict delta(18)O(R). A comparison of measurements and the model suggests that plants grown under low-light conditions have either a lower proportion of chloroplast CO(2) that isotopically equilibrates with chloroplast water, or more enriched delta(18)O of CO(2) in the chloroplast that has not equilibrated with local water. The high temporal resolution of isotopic measurements allowed the first measurements of delta(18)O(R) when stomatal conductance was rapidly changing. Under non-steady-state conditions, delta(18)O(R) varied between 50 and 220 per thousand for leaves of plants grown under different light and water environments, and varied by as much as 100 per thousand within 10 min for a single leaf. Stomatal conductance ranged from 0.001 to 1.586 mol m(-2) s(-1), and had an important influence on delta(18)O(R) under non-steady-state conditions not only via effects on leaf water H(2) (18)O enrichment, but also via effects on the rate of the one-way fluxes of CO(2) into and out of the leaf.  相似文献   

2.
Winter K  Holtum JA 《Plant physiology》2002,129(4):1843-1851
The extent to which Crassulacean acid metabolism (CAM) plant delta(13)C values provide an index of the proportions of CO(2) fixed during daytime and nighttime was assessed. Shoots of seven CAM species (Aloe vera, Hylocereus monocanthus, Kalanchoe beharensis, Kalanchoe daigremontiana, Kalanchoe pinnata, Vanilla pauciflora, and Xerosicyos danguyi) and two C(3) species (teak [Tectona grandis] and Clusia sp.) were grown in a cuvette, and net CO(2) exchange was monitored for up to 51 d. In species exhibiting net dark CO(2) fixation, between 14% and 73.3% of the carbon gain occurred in the dark. delta(13)C values of tissues formed inside the cuvette ranged between -28.7 per thousand and -11.6 per thousand, and correlated linearly with the percentages of carbon gained in the light and in the dark. The delta(13)C values for new biomass obtained solely during the dark and light were estimated as -8.7 per thousand and -26.9 per thousand, respectively. For each 10% contribution of dark CO(2) fixation integrated over the entire experiment, the delta(13)C content of the tissue was, thus, approximately 1.8 per thousand less negative. Extrapolation of the observations to plants previously surveyed under natural conditions suggests that the most commonly expressed version of CAM in the field, "the typical CAM plant," involves plants that gain about 71% to 77% of their carbon by dark fixation, and that the isotopic signals of plants that obtain one-third or less of their carbon in the dark may be confused with C(3) plants when identified on the basis of carbon isotope content alone.  相似文献   

3.
Oxygen atoms in plant products originate from CO(2), H(2)O and O(2), precursors with quite different delta18O values. Furthermore their incorporation by different reactions implies isotope effects. On this base the resulting non-statistical 18O distributions in natural compounds are discussed. The delta18O value of cellulose is correlated to that of the leaf water, and the observed 18O enrichment (approximately +27 per thousand) is generally attributed to an equilibrium isotope effect between carbonyl groups and water. However, as soluble and heterotrophically synthesised carbohydrates show other correlations, a non-statistical 18O distribution - originating from individual biosynthetic reactions - is postulated for carbohydrates. Similarly, the delta18O values of organic acids, carbonyl compounds, alcohols and esters indicate water-correlated, but individual 18O abundances (e.g. O from acyl groups approximately +19% above water), depending upon origin and biosyntheses. Alcoholic groups introduced by monooxygenase reactions, e.g. in sterols and phenols, show delta18O values near +5 per thousand, in agreement with an assumed isotope fractionation factor of approximately 1.02 on the reaction with atmospheric oxygen (delta18O=+23.5 per thousand). Correspondingly, a "thermodynamically ordered isotope distribution" is only observed for oxygen in some functional groups correlated to an origin from CO(2) and H(2)O, not from O(2). The individual isotopic increments of functional groups permit the prediction of global delta18O values of natural compounds on the basis of their biosynthesis.  相似文献   

4.
Leaf water (18)O enrichment (Delta(o)) influences the isotopic composition of both gas exchange and organic matter, with Delta(o) values responding to changes in atmospheric parameters. In order to examine possible influences of plant parameters on Delta(o) dynamics, we measured oxygen isotope ratios (delta(18)O) of leaf and stem water on plant species representing different life forms in Amazonia forest and pasture ecosystems. We conducted two field experiments: one in March (wet season) and another in September (dry season) 2004. In each experiment, leaf and stem samples were collected at 2-h intervals at night and hourly during the day for 50 h from eight species including upper-canopy forest trees, upper-canopy forest lianas, and lower-canopy forest trees, a C(4) pasture grass and a C(3) pasture shrub. Significant life form-related differences were detected in (18)O leaf water values. Initial modeling efforts to explain these observations over-predicted nighttime Delta(o) values by as much as 10 per thousand. Across all species, errors associated with measured values of the delta(18)O of atmospheric water vapor (delta(v)) appeared to be largely responsible for the over-predictions of nighttime Delta(o) observations. We could not eliminate collection or storage of water vapor samples as a possible error and therefore developed an alternative, plant-based method for estimating the daily average delta(v) value in the absence of direct (reliable) measurements. This approach differs from the common assumption that isotopic equilibrium exists between water vapor and precipitation water, by including transpiration-based contributions from local vegetation through (18)O measurements of bulk leaf water. Inclusion of both modified delta(v) and non-steady state features resulted in model predictions that more reliably predicted both the magnitude and temporal patterns observed in the data. The influence of life form-specific patterns of Delta(o) was incorporated through changes in the effective path length, an important but little known parameter associated with the Péclet effect.  相似文献   

5.
Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes.  相似文献   

6.
The adaptation of the respiratory metabolism in roots of soybean (Glycine max L. Merr. cv Ransom) treated with herbicides that inhibit the enzyme acetolactate synthase (ALS) was analyzed. A new gas phase dual-inlet mass spectrometry system for simultaneous measurement of 34O2 to 32O2 and O2 to N2 ratios has been developed. This system is more accurate than previously described systems, allows measurements of much smaller oxygen gradients, and, as a consequence, works with tissues that have lower respiration rates. ALS inhibition caused an increase of the alternative oxidase (AOX) protein and an accumulation of pyruvate. The combination of these two effects is likely to induce the activation of the alternative pathway and its participation in the total respiration. Moreover, the start of the alternative pathway activation and the increase of AOX protein were before the decline in the activity of cytochrome pathway. The possible role of AOX under ALS inhibition is discussed.  相似文献   

7.
Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon   总被引:12,自引:2,他引:10  
Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen.  相似文献   

8.
We measured the oxygen isotope composition (delta(18)O) of CO(2) respired by Ricinus communis leaves in the dark. Experiments were conducted at low CO(2) partial pressure and at normal atmospheric CO(2) partial pressure. Across both experiments, the delta(18)O of dark-respired CO(2) (delta(R)) ranged from 44 per thousand to 324 per thousand (Vienna Standard Mean Ocean Water scale). This seemingly implausible range of values reflects the large flux of CO(2) that diffuses into leaves, equilibrates with leaf water via the catalytic activity of carbonic anhydrase, then diffuses out of the leaf, leaving the net CO(2) efflux rate unaltered. The impact of this process on delta(R) is modulated by the delta(18)O difference between CO(2) inside the leaf and in the air, and by variation in the CO(2) partial pressure inside the leaf relative to that in the air. We developed theoretical equations to calculate delta(18)O of CO(2) in leaf chloroplasts (delta(c)), the assumed location of carbonic anhydrase activity, during dark respiration. Their application led to sensible estimates of delta(c), suggesting that the theory adequately accounted for the labeling of CO(2) by leaf water in excess of that expected from the net CO(2) efflux. The delta(c) values were strongly correlated with delta(18)O of water at the evaporative sites within leaves. We estimated that approximately 80% of CO(2) in chloroplasts had completely exchanged oxygen atoms with chloroplast water during dark respiration, whereas approximately 100% had exchanged during photosynthesis. Incorporation of the delta(18)O of leaf dark respiration into ecosystem and global scale models of C(18)OO dynamics could affect model outputs and their interpretation.  相似文献   

9.
The leaves of 37 grass, herb, shrub and tree species were collected from a mesotrophic grassland to assess natural variability in bulk, fatty acid and monosaccharide delta(13)C values of leaves from one plant community. The leaf tissue mean bulk delta(13)C value was -29.3 per thousand. No significant differences between tissue bulk delta(13)C values with life form were determined (P=0.40). On average, C(16:0), C(18:2) and C(18:3) constituted 89% of leaf tissue total fatty acids, whose delta(13)C values were depleted compared to whole leaf tissues. A general interspecific (between different species) trend for fatty acids delta(13)C values was observed, i.e. delta(13)C(16:0)delta(13)C(xylose)>delta(13)C(glucose)>delta(13)C(galactose), was consistently observed. Therefore, we have shown (i) diversity in compound-specific delta(13)C values contributing to leaf bulk delta(13)C values; (ii) interspecific variability between bulk and compound-specific delta(13)C values of leaves of individual grassland species, and (iii) trends between individual fatty acid and monosaccharide delta(13)C values common to leaves of all species within one plant community.  相似文献   

10.
Plants can alter rates of electron transport through the alternative oxidase (AOX) pathway in response to environmental cues, thus modulating respiratory efficiency, but the (18)O discrimination method necessary for measuring electron partitioning in vivo has been restricted to laboratory settings. To overcome this limitation, we developed a field-compatible analytical method. Series of plant tissue subsamples were incubated in 12 mL septum-capped vials for 0.5-4 h before aliquots of incubation air were injected into 3.7 mL evacuated storage vials. Vials were stored for up to 10 months before analysis by mass spectrometry. Measurements were corrected for unavoidable contamination. Additional mathematical tools were developed for detecting and addressing non-linearity (whether intrinsic or due to contamination) in the data used to estimate discrimination values. Initial contamination in the storage vials was 0.03 ± 0.01 atm; storing the gas samples at -17 °C eliminated further contamination effects over 10 months. Discrimination values obtained using our offline incubation and computation method replicated previously reported results over a range of 10-31‰, with precision generally better than ±0.5‰. Our method enables large-scale investigations of plant alternative respiration along natural environmental gradients under field conditions.  相似文献   

11.
Chill treatment of potato tubers for 8 days induced mitochondrial O2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O2 consumption by nearly half, and addition at the end of the reaction released half of the O2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.  相似文献   

12.
BACKGROUND: The nondispersive isotope-selective infrared spectroscopy (NDIRS) is a valid method for the measurement of the 13CO2:12CO2 ratio in breath samples. Methodical influences have to be considered to obtain valid results. AIM: To evaluate the effect of oxygen supply to patients on the measurement of 13C:12C ratio in breath samples by NDIRS. METHODS: Breath samples of 26 healthy volunteers were taken before, immediately after, and 5 minutes after inhalation of 100% oxygen via a continuous positive air pressure (CPAP) mask. Analysis of breath samples was performed by NDIRS. RESULTS: Delta per thousand before oxygen inhalation was -25.8 +/- 0.2. Immediately after 5 minutes of 100% oxygen inhalation, delta per thousand increased to -14.8 +/- 0.5 (delta over baseline [DOB] 11.0 +/- 0.4) and after additional 5 minutes of room air inhalation, delta per thousand normalized to -25.6 +/- 0.2 (DOB 0.2 +/- 0.1). CONCLUSIONS: Oxygen supply to patients and, therefore, changes in gas composition in breath samples clearly influence 13CO2 measurement by NDIRS. This has to be taken into account in the clinical setting. Thus, oxygen supply during measurement of exhaled 13CO2 by NDIRS has to be avoided or maintained at a strictly constant level.  相似文献   

13.
Nitrogen stable-isotope compositions (delta15N) can help track denitrification and N2O production in the environment, as can knowledge of the isotopic discrimination, or isotope effect, inherent to denitrification. However, the isotope effects associated with denitrification as a function of dissolved-oxygen concentration and their influence on the isotopic composition of N2O are not known. We developed a simple steady-state reactor to allow the measurement of denitrification isotope effects in Paracoccus denitrificans. With [dO2] between 0 and 1.2 microM, the N stable-isotope effects of NO3- and N2O reduction were constant at 28.6 per thousand +/- 1.9 per thousand and 12.9 per thousand +/- 2.6 per thousand, respectively (mean +/- standard error, n = 5). This estimate of the isotope effect of N2O reduction is the first in an axenic denitrifying culture and places the delta15N of denitrification-produced N2O midway between those of the nitrogenous oxide substrates and the product N2 in steady-state systems. Application of both isotope effects to N2O cycling studies is discussed.  相似文献   

14.
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) plays a key role during C(4) photosynthesis and is involved in anaplerotic metabolism, pH regulation, and stomatal opening. Heterozygous (Pp) and homozygous (pp) forms of a PEPC-deficient mutant of the C(4) dicot Amaranthus edulis were used to study the effect of reduced PEPC activity on CO(2) assimilation rates, stomatal conductance, and (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope discrimination during leaf gas exchange. PEPC activity was reduced to 42% and 3% and the rates of CO(2) assimilation in air dropped to 78% and 10% of the wild-type values in the Pp and pp mutants, respectively. Stomatal conductance in air (531 mubar CO(2)) was similar in the wild-type and Pp mutant but the pp mutant had only 41% of the wild-type steady-state conductance under white light and the stomata opened more slowly in response to increased light or reduced CO(2) partial pressure, suggesting that the C(4) PEPC isoform plays an essential role in stomatal opening. There was little difference in Delta(13)C between the Pp mutant (3.0 per thousand +/- 0.4 per thousand) and wild type (3.3 per thousand +/- 0.4 per thousand), indicating that leakiness (), the ratio of CO(2) leak rate out of the bundle sheath to the rate of CO(2) supply by the C(4) cycle, a measure of the coordination of C(4) photosynthesis, was not affected by a 60% reduction in PEPC activity. In the pp mutant Delta(13)C was 16 per thousand +/- 3.2 per thousand, indicative of direct CO(2) fixation by Rubisco in the bundle sheath at ambient CO(2) partial pressure. Delta(18)O measurements indicated that the extent of isotopic equilibrium between leaf water and the CO(2) at the site of oxygen exchange () was low (0.6) in the wild-type and Pp mutant but increased to 0.9 in the pp mutant. We conclude that in vitro carbonic anhydrase activity overestimated as compared to values determined from Delta(18)O in wild-type plants.  相似文献   

15.
The alternative oxidase (AOX) of plant mitochondria transfers electrons from the ubiquinione pool to oxygen without energy conservation and prevents the formation of reactive oxygen species (ROS) when the ubiquinone pool is over-reduced. Thus, AOX may be involved in plant acclimation to a number of oxidative stresses. To test this hypothesis, we exposed wild-type (WT) Xanthi tobacco plants as well as Xanthi plants transformed with the Bright Yellow tobacco AOX1a cDNA with enhanced (SN21 and SN29), and decreased (SN10) AOX capacity to an acute ozone (O3) fumigation. As a result of 5 h of O3 exposition (250 nL L(-1)), SN21 and SN29 plants surprisingly showed localized leaf damage, whereas SN10, similarly to WT plants, was undamaged. In keeping with this observation, WT and SN21 plants differed in their response to O3)for the expression profiles of catalase 1 (CAT1), catalase 2 (CAT2), glutathione peroxidase (GPX) and ascorbate peroxidase (APX) genes, and for the activity of these antioxidant enzymes, which were induced in WT. Concomitantly, although ozone induced H2O2 accumulation in WT and in all transgenic lines, only in transgenics with high AOX capacity the H2O2 level in the post-fumigation period was high. The alternative pathway of WT plants was strongly stimulated by O3, whereas in SN21 plants, the respiratory capacity was always high across the treatment. The present results show that, far from exerting a protective role, the overexpression of AOX triggers an increased O3 sensitivity in tobacco plants. We hypothesize that the AOX overexpression results in a decrease of mitochondrial ROS level that in turn alters the defensive mitochondrial to nucleus signalling pathway that activates ROS scavenging systems.  相似文献   

16.
This study examined tobacco ( Nicotiana tabacum cv. Petit Havana SR1) leaf respiration in the dark, utilizing both wild-type plants and transgenic plants with increased or decreased levels of alternative oxidase (AOX) protein. AOX represents a non-energy-conserving branch in mitochondrial electron transport. Inhibitor studies showed that the maximum possible flux of electrons to AOX (AOX capacity) correlated with the level of AOX protein present in the different plant lines. A comparison of the plants using online 18O isotope discrimination was done to determine whether AOX protein level would impact the actual steady-state partitioning of electrons to AOX (AOX engagement). Under a range of pretreatment and measurement conditions, there was little if any effect of AOX protein level on the degree of engagement. This suggests that the metabolic conditions inherent to a particular growth condition and/or the biochemical regulatory properties of AOX itself are the critical factors that control partitioning. Interestingly, we found that measurement temperature and water status are parameters that may have some influence over AOX engagement.  相似文献   

17.
Gillon JS  Yakir D 《Plant physiology》2000,123(1):201-214
(18)O discrimination in CO(2) stems from the oxygen exchange between (18)O-enriched water and CO(2) in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this (18)O-labeled CO(2) escapes back to the atmosphere, resulting in an effective discrimination against C(18)OO during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO(2)-H(2)O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO(2) concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO(2) drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO(2) conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO(2) assimilation rate should be important mainly in plants with low internal conductances.  相似文献   

18.
A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry.  相似文献   

19.
Stable hydrogen and carbon isotopic compositions of individual n-alkanes were determined for various terrestrial plants (33 samples including 27 species) and aquatic plants (six species) in natural environments from Japan and Thailand. In C3 plants, n-alkanes extracted from angiosperms have a deltaD value of -152+/-26 per thousand (relative to Standard Mean Ocean Water [SMOW]) and delta13C value of -36.1+/-2.7 per thousand (relative to Peedde Belemnite [PDB]), and those from gymnosperms have a deltaD value of -149+/-16 per thousand and delta13C value of -31.6+/-1.7 per thousand. Angiosperms have n-alkanes depleted in 13C relative to gymnosperms. n-Alkanes from C4 plants have a deltaD value of -171+/-12 per thousand and delta13C value of -20.5+/-2.1 per thousand, being a little depleted in D and much enriched in 13C compared to C3 plants. n-Alkanes of CAM plants are a little depleted in D and vary widely in delta13C relative to those of C3 and C4 plants. In aquatic plants, n-alkanes from freshwater plants have a deltaD value of -187+/-16 per thousand and delta13C value of -25.3+/-1.9 per thousand, and those from seaweeds have a deltaD value of -155+/-34 per thousand and delta13C value of -22.8+/-1.0 per thousand. All n-alkanes from various plant classes are more depleted in D and 13C relative to environmental water and bulk tissue, respectively. In addition, the hydrogen and carbon isotopic fractionations during n-alkane synthesis are distinctive for these various plant classes. While C3 plants have smaller isotopic fractionations in both D and 13C, seaweed has larger isotopic fractionations.  相似文献   

20.
? Philodendron bipinnatifidum inflorescences heat up to 42 °C and thermoregulate. We investigated whether they generate heat via the cytochrome oxidase pathway uncoupled by uncoupling proteins (pUCPs), or the alternative oxidase (AOX). ? Contribution of AOX and pUCPs to heating in fertile (FM) and sterile (SM) male florets was determined using a combination of oxygen isotope discrimination, protein and substrate analyses. ? Both FM and SM florets thermoregulated independently for up to 30 h ex planta. In both floret types, AOX contributed > 90% of respiratory flux during peak heating. The AOX protein increased fivefold with the onset of thermogenesis in both floret types, whereas pUCP remained low throughout development. These data indicate that AOX is primarily responsible for heating, despite FM and SM florets potentially using different substrates, carbohydrates or lipids, respectively. Measurements of discrimination between O? isotopes in strongly respiring SM florets were affected by diffusion; however, this diffusional limitation was largely overcome using elevated O?. ? The first in vivo respiratory flux measurements in an arum show AOX contributes the bulk of heating in P. bipinnatifidum. Fine-scale regulation of AOX activity is post-translational. We also demonstrate that elevated O? can aid measurement of respiratory pathway fluxes in dense tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号