首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves beta-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in beta-casein turnover when the assay temperature is raised from 37 to 45 degrees C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.  相似文献   

2.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   

3.
用重组PCR技术对猪瘟病毒石门株E2基因进行了定点突变, 然后将突变后的基因克隆至表达载体质粒pET-28a(+)中,构建成重组质粒pETE2。将pETE2转入受体菌BL21(DE3)plysS中,在IPTG的诱导下, 重组转化菌可高效表达目的基因, 表达量平均可达菌体蛋白总量的28%。免疫印迹和间接ELISA表明所表达的蛋白是CSFV特异性的。此重组蛋白免疫的家兔可抵抗猪瘟兔化弱毒的攻击。  相似文献   

4.
5.
目的:酪氨酸蛋白激酶NOK/STYKl具有很强的促肿瘤形成和转移能力,被认为是很有前途的肿瘤治疗靶点。由于NOK含有一个跨膜区,且富含疏水性氨基酸,其表达和纯化非常困难,直接影响了对其功能及相关分子机理的深入研究。本研究目的是获得可溶的且纯度较高的NOK胞内区融合蛋白ANOK(AA:49—422),为后续抗体的制备和功能研究奠定重要基础。方法:含有△NOK基因的原核表达载体,转入E-coliBL21中,IPTG诱导蛋白表达,通过亲和层析获得可溶的△NOK融合蛋白。融合蛋白经凝血酶酶切后,凝胶过滤层析分离标签蛋白获得z~NOK蛋白。同时,我们还通过Bac-to-Bac系统获得含有ANOK基因的杆状病毒,感染sO细胞,尝试在真核细胞中表达目的蛋白。结果:通过在sf9昆虫细胞和大肠杆菌表达系统中盐浓度等各种条件的摸索,首次获得了可溶的且纯度较高的NOK胞内区融合蛋白(ANOK—GST)和一定量去除标签的ANOK蛋白。本研究中与大肠杆菌相比,昆虫细胞并不适合△NOK的纯化。结论:我们建立了一套优化的NOK蛋白表达和纯化体系,从而为后续抗体制备和各种体内外生化实验等功能研究奠定基础,为研究NOK在肿瘤中的作用和药物筛选创造条件。同时丰富了整个RTKs家族作用机制的探索,进一步促进了以RTKs为靶点的治疗手段在临床上的应用。  相似文献   

6.
sBAFF mutants induce neutralizing antibodies against BAFF   总被引:3,自引:0,他引:3  
Gao H  Bian A  Zheng Y  Li R  Ji Q  Huang G  Hu D  Zhang L  Gong W  Hu Y  He F 《FEBS letters》2007,581(4):581-586
B cell activating factor belonging to the TNF family (BAFF) is a novel member of the tumor necrosis factor (TNF) ligand family and plays an important role in B lymphocyte maturation and survival. Overexpression of BAFF is closely involved in the pathogenesis and progression of many kinds of autoimmune disorders; therefore, BAFF has been considered as an ideal therapeutic target for these conditions. In this study, we generated several candidate immune inhibitors of human BAFF by conjugating foreign immunodominant T-helper cell (Th) epitopes to the N- or C-terminus of five BAFF mutants. The recombined proteins were successfully expressed in Escherichia coli (E. coli) and purified by Ni-NTA chromatography. BALB/c mice immunized with the recombinant proteins produced high levels of anti-BAFF antibodies, and their sera inhibited the lymphocyte proliferation-inducing activity of recombinant soluble BAFF and natural soluble BAFF. Moreover, antibodies cross-reactive with BAFF were detected in sera from hu-SCID mice immunized with the recombinant proteins. These results indicated that the recombinant BAFF mutants modified with Th epitopes could induce neutralizing antibodies against BAFF in vivo. This study may provide a valuable strategy for treating BAFF-associated autoimmune diseases.  相似文献   

7.
Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na(+)/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of xylosidase.  相似文献   

8.
Granulins (GRNs) are potent growth factors that are upregulated in many aggressive cancers from a wide range of organs. GRNs form tight, disulphide bonded, beta hairpin stacks, making them difficult to express in recombinant form. We recently described Ov-GRN-1, a GRN family member secreted by the carcinogenic liver fluke of humans, Opisthorchis viverrini, and showed that recombinant Ov-GRN-1 expressed and refolded from Escherichia coli caused proliferation of mammalian cell lines at nanomolar concentrations. We now report on an optimized method to express and purify monomeric Ov-GRN-1 in E. coli using a straightforward and scalable purification and refolding process. Purified monomeric protein caused proliferation at nanomolar concentrations of cancerous and non-cancerous cell lines derived from human bile duct tissue. The expression and purification method we describe herein will serve as a backbone upon which to develop expression and purification processes for recombinant GRNs from other organisms, accelerating research on this intriguing family of proteins.  相似文献   

9.
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis . Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.  相似文献   

10.
从大熊猫基因组中克隆了FOXL2基因,并对其进行序列分析及原核表达和真核表达.将FOXL2编码区序列克隆到原核表达载体pET-32a(+)中,转化大肠杆菌BL21,经IPTG诱导表达出FOXL2重组蛋白.成功构建了真核表达载体FOXL2-pcDNA3.1/V5-His C,并通过脂质体介导转染HEK293细胞,Western blot检测FOXL2蛋白表达.SDS-PAGE分析表明,FOXL2重组蛋白在诱导4h后表达量达到峰值,其大小约为58.9 kDa,Western blot分析结果显示重组蛋白能够被抗His单克隆抗体特异性识别.FOXL2基因的克隆及其表达为进一步进行FOXL2的活性检测以及应用研究奠定了基础.  相似文献   

11.
Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions.  相似文献   

12.
Protein expression in Escherichia coli at 15-25°C is widely used to increase the solubility of recombinant proteins. However, many recombinant proteins are insolubly expressed even at those low temperatures. Here, we show that recombinant proteins can be expressed as soluble forms by simply lowering temperature to 6-10°C without cold adapted chaperon systems. By using E. coli Rosetta-gami2(DE3), we obtained 1.8 and 0.9mg of Cryptopygus antarticus mannanase (CaMan) and cellulase (CaCel) from 1l culture grown at 6 and 10°C, respectively. Cultivation at 10°C also led to successful expression of EM3L7 (a lipase isolated from a metagenomic library) in a soluble form in E. coli BL21(DE3). Consequently, E. coli cultivation at 6-10°C is an effective strategy for overcoming a major hurdle of the inclusion body formation.  相似文献   

13.
The enzyme NAD(+) synthetase (NadE) catalyzes the last step of NAD biosynthesis. Given NAD vital role in cell metabolism, the enzyme represents a valid target for the development of new antimycobacterial agents. In the present study we expressed and purified two putative forms of Mycobacterium tuberculosis NAD(+) synthetase, differing in the polypeptide chain length (NadE-738 and NadE-679). Furthermore, we evaluated several systems for the heterologous expression and large scale purification of the enzyme. In particular, we compared the efficiency of production, the yield of purification, and the catalytic activity of recombinant enzyme in different hosts, ranging from Escherichia coli strains to cultured High Five (Trichoplusia ni BTI-TN-5B1-4) insect cells. Among the systems assayed, we found that the expression of a thioredoxin-NadE fusion protein in E. coli Origami(DE3) is the best system in obtaining highly pure, active NAD(+) synthetase. The recombinant enzyme maintained its activity even after proteolytic cleavage of thioredoxin moiety. Biochemical evidence suggests that the shorter form (NadE-679) may be the real M. tuberculosis NAD(+) synthetase. These results enable us to obtain a purified product for structure-function analysis and high throughput assays for rapid screening of compounds which inhibit enzymatic activity.  相似文献   

14.
Members of the multifunctional Cyp family have been isolated from a wide range of organisms. However, few functional studies have been performed on the role of these proteins as chaperones in red alga. For studying the function of cDNA GjCyp-1 isolated from the red alga (Griffithsia japonica), we expressed and purified a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus in Escherichia coli. An expressed fusion protein, H6GjCyp-1 maintained the stability of E. coli proteins up to 50 degrees C. For a functional bioassay for recombinant H6GjCyp-1, the viability of E. coli cells overexpressing H6GjCyp-1 was compared with that of cells not expressing H6GjCyp-1 at 50 degrees C. After high temperature treatment for 1 h, E. coli overexpressing H6GjCyp-1 survived about three times longer than E. coli lacking H6GjCyp-1. Measurement of the light scattering of luciferase (luc) showed that GjCyp-1 prevents the aggregation of luc during mild heat stress and that the thermoprotective activity of GjCyp-1 is blocked by cyclosporin A (CsA), an inhibitor of Cyps. Furthermore, the Cyp-CsA complex inhibited the growth of E. coli under normal conditions. The results of the GjCyp-1 bioassays as well as in vitro studies strongly suggest that Cyp confers thermotolerance to E. coli.  相似文献   

15.
For effective FMD control programme, India needs large quantities of cheaper diagnostics in addition to vaccine. Diagnostic reagents produced through conventional methods may not be able to meet such requirements. Alternatively, rDNA technology using suitable heterologous systems that permit production of recombinant antigens to the most native form may be exploited. Studies conducted in our laboratory have led us to select carboxy terminal part of VP1 for expression and evaluation. The protein, which was purified from E.coli under denaturing conditions, was renatured and its reactivity was compared with the protein expressed in insect cells through recombinant baculovirus. The expressed protein in the insect cell whole lysate reacted more efficiently with antibodies raised against whole virus than the purified and renatured protein produced in E.coli. But for its lower reactivity, protein produced from E.coli was found to be suitable in type detection. In addition, the size of the protein is small (16 kD) and production and purification of it from E.coli may be cost effective. Hence, it may be exploited for FMDV typing.  相似文献   

16.
Oligopeptidase B (OpdB) of Escherichia coli, previously called protease II, has a trypsin-like specificity, cleaving peptides at lysine and arginine residues and belongs to the prolyl oligopeptidase family of new serine peptidases. In this study, we report the fusion expression of E. coli oligopeptidase B with an N-terminal histidine tag using pET28a as the expression vector. Although most of the recombinant OpdB was produced as inclusion bodies, the solubility of the recombinant protease increased significantly when the expression temperature shifted from 37 to 30 degrees C. Recombinant OpdB (approximately 10 mg) could be purified from the soluble fraction of the crude extract of 1L log-phase E. coli culture containing 1.5 g wet bacterial cells. The purified OpdB has a molecular weight of approximately 80 kDa and a specific activity of 4.8 x 10(4) U/mg. OpdB could also be purified from the inclusion bodies with a lower yield. The recombinant enzyme was very stable under 40 degrees C. By comparison of the substrate specificity of the purified OpdB with that of OpdA, another trypsin-like protease in E. coli, we found that Boc-Glu-Lys-Lys-MCA is a specific substrate for E. coli OpdB. We also found that compared to OpdA, OpdB is much more sensitive to GMCHA-OPh(t)Bu, a synthetic trypsin inhibitor that can retard the growth of E. coli.  相似文献   

17.
The mammalian methionine sulfoxide reductase B (MsrB) has been found to be a selenoprotein which can reduce R form of both free and protein-incorporated methionine sulfoxide to methionine. Together with MsrA, which reduces specifically the S form of methionine sulfoxide, the living cell can repair methionine-damaged proteins and salvage free methionine under oxidative stress conditions. Here, we report about the pivotal role of the selenocysteine residue in the protein putative active site by site-directed mutagenesis directed to the selenocysteine codon. Using the Escherichia coli SECIS (selenocysteine insertion sequence) element, needed for the recognition of the UGA codon as a selenocysteine codon in E. coli, we expressed the seleno-MsrB as a recombinant selenoprotein in E. coli. The recombinant seleno-MsrB has been shown to be much more active than the cysteine mutant, whereas the mutations to alanine and serine rendered the protein inactive. Although the yields of expression of the full-length N-terminus and C-terminus His-tagged seleno-MsrB were only 3% (of the total MsrB expressed), the C-terminus His-tagged protein enabled us to get a pure preparation of the seleno-MsrB. Using both recombinant selenoproteins, the N-terminus His-tagged and the C-terminus His-tagged proteins, we were able to determine the specific activities of the recombinant seleno-MsrB, which were found to be much higher than the cysteine mutant homologue. This finding confirmed our suggestion that the selenocysteine is essential for maintaining high reducing activity of MsrB. In addition, using radioactive selenium we were able to determine the in vivo presence of MsrB as a selenoprotein in mammalian cell cultures.  相似文献   

18.
Allergic reactions to peanuts are a serious health problem because of their high prevalence, associated with potential severity, and chronicity. One of the three major allergens in peanut, Ara h 2, is a member of the conglutin family of seed storage proteins. Ara h 2 shows high sequence homology to proteins of the 2S albumin family. Presently, only very few structural data from allergenic proteins of this family exist. For a detailed understanding of the molecular mechanisms of food-induced allergies and for the development of therapeutic strategies knowledge of the high-resolution three-dimensional structure of allergenic proteins is essential. We report a method for the efficient large-scale preparation of properly folded Ara h 2 for structural studies and report CD-spectroscopic data. In contrast to other allergenic 2S albumins, Ara h 2 exists as a single continuous polypeptide chain in peanut seeds, and thus heterologous expression in Escherichia coli was possible. Ara h 2 was expressed as Trx-His-tag fusion protein in E. coli Origami (DE3), a modified E. coli strain with oxidizing cytoplasm which allows the formation of disulfide bridges. It could be shown that recombinant Ara h 2, thus overexpressed and purified, and the allergen isolated from peanuts are identical as judged from immunoblotting, analytical HPLC, and circular dichroism spectra.  相似文献   

19.
Escherichia coli is able to grow on sugars in the presence of a bulk n-alkane phase. When E. coli is equipped with the alk genes from Pseudomonas oleovorans, the resulting recombinant strain converts n-alkanes into the corresponding alkanoic acids. To study the effects of growth rate and exposure to a bulk apolar phase on the physiology and the productivity of E. coli, we have grown this microorganism in two-liquid-phase continuous cultures containing 5% (v/v) n-octane.In contrast to batch cultures of wild-tape E. coli grown in the presence of n-octane, cells remained viable during the entire continuous culture, which lasted 200 h. Bioconversion of n-octane to n-octanoic acid by a recombinant E. coli (alk(+)) in a two-liquid-phase continuous culture was made possible by optimizing both the recombinant host strain and the conditions of culturing the organism. Continuous production in such two-phase systems has been maintained for the least 125 h without any changes in the product concentration in the fermentation medium. The volumetric productivity was determined as a function of growth rate and showed a maximum at a dilution rate D = 0.32 h(-1), reaching a continuous production rate of 0.5 g octanoate/L . h (4 tons/m(3) . year). (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
NupG from Escherichia coli is the archetype of a family of nucleoside transporters found in several eubacterial groups and has distant homologues in eukaryotes, including man. To facilitate investigation of its molecular mechanism, we developed methods for expressing an oligohistidine-tagged form of NupG both at high levels (>20% of the inner membrane protein) in E. coli and in Xenopus laevis oocytes. In E. coli recombinant NupG transported purine (adenosine) and pyrimidine (uridine) nucleosides with apparent K(m) values of approximately 20-30 microM and transport was energized primarily by the membrane potential component of the proton motive force. Competition experiments in E. coli and measurements of uptake in oocytes confirmed that NupG was a broad-specificity transporter of purine and pyrimidine nucleosides. Importantly, using high-level expression in E. coli and magic-angle spinning cross-polarization solid-state nuclear magnetic resonance, we have for the first time been able directly to measure the binding of the permeant ([1'-(13)C]uridine) to the protein and to assess its relative mobility within the binding site, under non-energized conditions. Purification of over-expressed NupG to near homogeneity by metal chelate affinity chromatography, with retention of transport function in reconstitution assays, was also achieved. Fourier transform infrared and circular dichroism spectroscopy provided further evidence that the purified protein retained its 3D conformation and was predominantly alpha-helical in nature, consistent with a proposed structure containing 12 transmembrane helices. These findings open the way to elucidating the molecular mechanism of transport in this key family of membrane transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号