首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyzing the direction of F1-ATPase subunit γ rotation, its shape and non-random distribution of surface residues, a mechanism is proposed for how γ induces the closing/opening of the catalytic sites at β/α interfaces: by keeping contact with the mobile domain of subunits β at the ‘jaw’ (D386, the seven consecutive hydrophobic residues and D394/E395), rotating γ works as a screw conveyer within the barrel of (α,β)3. Mutations of the conveyer contacts are predicted to inhibit. Rotating wheel cartoons illustrate enzyme turnover and conformational changes. Steric clashes, polar interactions and also substrate limitations lead to specific stops. Because it is constructed as a stepper, γ prevents uncoupling at high energy charge.  相似文献   

2.
Analyzing the direction of F1-ATPase subunit gamma rotation, its shape and non-random distribution of surface residues, a mechanism is proposed for how gamma induces the closing/opening of the catalytic sites at beta/alpha interfaces: by keeping contact with the mobile domain of subunits beta at the 'jaw' (D386, the seven consecutive hydrophobic residues and D394/E395), rotating gamma works as a screw conveyer within the barrel of (alpha,beta)3. Mutations of the conveyer contacts are predicted to inhibit. Rotating wheel cartoons illustrate enzyme turnover and conformational changes. Steric clashes, polar interactions and also substrate limitations lead to specific stops. Because it is constructed as a stepper, gamma prevents uncoupling at high energy charge.  相似文献   

3.
4.
Conformational change in the α subunit of Escherichia coli proton-translocating ATPase was studied using trypsin. The subunit was cleaved with a small amount of trypsin (1 μg/mg subunit) to peptides of less than 8000 daltons. On the other hand, the subunit was cleaved to two main polypeptides (30,000 and 25,000 daltons) in the presence of sufficient ATP (1 mm-0.5 μm) to saturate the high-affinity site of the subunit. Analysis of digests of the subunit combined with fluorescent maleimide suggested that the subunit was digested in the middle of the polypeptide chain in the presence of the nucleotide. ADP and adenylyl imidodiphosphate had the same effect as ATP. These results suggest that the conformation of the subunit changed to form two trypsin-resistant domains upon binding of ATP to the high-affinity site.  相似文献   

5.
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.  相似文献   

6.
We describe two unrelated patients with pyruvate dehydrogenase (PDH) deficiency attributable to mutations in the gene encoding the E1 subunit of the complex. This is a previously unrecognised form of PDH deficiency, which most commonly results from mutations in the X-linked gene for the E1 subunit. Both patients had reduced immunoreactive E1 protein and both had missense mutations in the E1 gene. Activity of the PDH complex was restored in cultured fibroblasts from both patients by transfection and expression of the normal E1 coding sequence.  相似文献   

7.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   

8.
γ-Aminobutyric acid type A (GABAA) receptor β1 (gabrb1), a subunit of GABAA receptors involved in inhibitory effects on neurotransmission, was found to associate with the formation of protease-resistant prion protein in prion-infected neuroblastoma cells. Silencing of gabrb1 gene expression significantly decreased the abnormal prion protein level but paradoxically increased the normal prion protein level. Treatment with a gabrb1-specific inhibitor, salicylidene salicylhydrazide, dose-dependently decreased the abnormal prion protein level, but silencing of other GABAA receptor subunits’ gene expression and treatments with the receptor antagonists and agonists did not. Therefore, gabrb1 involvement in abnormal prion protein formation is independent of GABAA receptors.  相似文献   

9.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

10.
《BBA》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral “stator stalk”, which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2δ; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit δ (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.  相似文献   

11.
Proteomic analyses of the β subunit of the plastid ATP synthase of barley (Hordeum vulgare L.) revealed that mature protein was not carboxy terminus processed and suggested the correction of the 274 codon (GAT to AAT) in the data bank that was confirmed by DNA sequencing. Six isoforms of the ATP synthase β subunit with pI ranging from 4.95 to 5.14 were resolved by two-dimensional electrophoresis (2-DE). Mass spectrometry analyses indicated that the six isoforms differ in their phosphorylation degree, which was confirmed by the disappearance of more acidic forms after incubation with the protein phosphatase calcineurin. Six Ser and/or Thr were detected as phosphorylated, among them the conserved Thr-179 that is also phosphorylated in the β subunit of human mitochondria. The results are discussed in relation with the proposed regulation of the ATP synthase by phosphorylation and 14-3-3 proteins.  相似文献   

12.
Integrins are heterodimeric cell surface receptors that mediate developmental events by binding extracellular matrix ligands. Several lines of evidence suggest a role for integrins, specifically the α 6 subunit, in neuronal migration, neurite outgrowth, and axon guidance during olfactory development. Therefore, we undertook an analysis of the expression of the α 6 subunit in the olfactory system of the embryonic and early postnatal mouse to understand the role it may play during neural development. In addition, as a functional assay we examined the developmental effects of the loss of this subunit on olfactory development by analyzing an α 6 knockout (α 6?/?). Immunohistochemical analyses and confocal microscopy were used to examine α 6 expression in the CD-1 embryonic and early postnatal olfactory system and also to examine the organization of the olfactory system in the α 6?/? mouse. In CD-1 mice from E13 to E17, α 6 localizes in radial patterns extending from the core of the olfactory bulb to the nerve layer and colocalizes with RC2, an antibody specific for radial glia. By the day of birth (P0; ~E19), expression is limited to the external plexiform layer and the olfactory nerve layer, where it colocalizes with laminin and p75. In the α 6?/? mouse, areas of ectopic granule cells were observed in the mitral cell layer of the olfactory bulb. These ectopias coincided with areas of disorganization of the radial glial processes and breaks in the mitral cell layer. These observations suggest a role for α 6 integrin in neural migration during olfactory development, likely secondary to organization of the radial glial scaffold.  相似文献   

13.
Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α (polymerase), ε (3'-5' exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation.  相似文献   

14.
The twelve Cys and eight of the non-Cys residues are invariant in the glycoprotein hormone subunits from a variety of mammalian species. -Gin-54 of human lutropin (hLH) and choriogonadotropin (hCG) is one of these invariant amino acid residues. A single AG mutation in the LH gene of a patient presenting with hypogonadism resulted in the replacement of Gin-54 with Arg [1]. The authors also reported that an expressed mutant of hLH, with Arg replacing Gin-54, associated with the subunit, but there was no demonstrable binding of the mutant hormone to receptor. We have replaced Gin-54 in hCG with Glu and with Lys using site-directed mutagenesis. The expression plasmids pRSV-hCG (wild-type and mutants) were transiently transfected into CHO cells containing a stably integrated gene for bovine , and the media were analyzed for holoproteins, which were characterizedin vitro using competitive binding and steroidogenic assays with MA-10 cells. hCG(Glu-54) bound to almost as well as hCG wild-type, and the resulting heterodimer competed with [125l]hCG binding to the LH/CG receptor and stimulated progesterone production to the same extent as the wild-type control. However, the apparent potencies, as judged by ED50s, were less than those of the wild-type control, the effect being more pronounced in binding than in steroidogenesis. In contrast, hCG(Lys-54) associated very poorly with . Our results suggest that while Gin-54 in hCG participates in receptor binding, its major function appears to involve binding. Such dual functionality leads to interesting models for holoprotein formation and receptor binding.  相似文献   

15.
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.  相似文献   

16.
17.
Labelling of Rhodobacter capsulatus cells with (32P)Pi in a phototrophic culture results in phosphorylation of a membrane-bound polypeptide identified as the subunit of the LHI antenna complex of the photosynthetic apparatus. Phosphorylation of the same polypeptide was also observed by incubation of chromatophores with (32P)ATP or under conditions of photophosphorylation with ADP and (32P)Pi. The identity of the phosphorylated LHI- subunit was demonstrated by N-terminal protein sequencing of the phosphorylated polypeptide and by failure of labelling in LHI-defective mutants. Pre-aeration of the samples or addition of the oxidant potassium ferrcyanide stimulated the kinase activity whereas the presence of soluble cytoplasmic proteins impaired phosphorylation in an in vitro assay. No effect resulted from addition of reductants to the assay medium. The results indicate the presence of a membrane-bound protein kinase in R. capsulatus that phosphorylates the subunit of the LHI antenna complex under redox control.Abbreviations Pi inorganic phosphate - SDS-PAGE sodium dodecyl-sulfate polyacrylamide gel electrophoresis  相似文献   

18.
Spinach chloroplast thylakoids treated in the light with bifunctional maleimides were previously shown to be uncoupled. The increase in proton permeability by these reagents is caused by the cross-linking of an accessible group on the subunit of coupling factor 1 (CF1) to a group that becomes exposed to reaction with maleimides only when the thylakoids are energized. In this study, several bifunctional maleimides, includingo-,m-, andp-phenylenebismaleimides, 2,3- and 1,5-naphthalenebismaleimides, and azophenylbismaleimide, were tested for their ability to form cross-links and to uncouple photophosphorylation. These reagents form cross-links from about 6 to 19 Å. Each reagent was found to form cross-links in the light and to inhibit photophosphorylation. However, the effectiveness of these compounds as uncouplers decreased as the distance between the cross-linked groups increased, indicating that the distance between two groups on the subunit of CF1 can regulate proton flux through the membrane. Monofunctional maleimides cause a light-dependent energy transfer type of inhibition of photophosphorylation. Although this inhibition was correlated to the reaction of the maleimide with a group on the subunit that is exposed only in energized thylakoids, the accessible group on this subunit was also modified by the reagent. However, we show here that the accessible group plays no role in the inhibition of photophosphorylation. This group may be blocked by incubating thylakoids in the dark with methyl methanethiolsulfonate. The light-dependent inhibition of photophosphorylation byN-ethylmaleimide was unaffected by this treatment or by the subsequent removal of the methanethiol moiety from the accessible group.  相似文献   

19.
We have characterized several subdomains of the subunit of protein kinase CK2. The N-terminal half of the protein exhibits a pseudo-substrate segment in tandem with a polyamine binding domain responsible for the activation of the kinase by these polybasic compounds. Study of the chemical features of this polyamine binding site showed that polyamine analogs exhibiting the highest affinity for CK2 are the best CK2 activators. Mutational analysis disclosed that glutamic residues lying in the polyacidic region of the CK2 subunit are involved in the interaction with polyamine molecules and allowed the delineation of an autonomous binding domain. Furthermore, this regulatory domain was shown to mediate the association of CK2 with plasma membrane.The C-terminal domain of the CK2 subunit plays a role in the oligomerization of the kinase since it was observed that a truncated form of this subunit lacking its 33-last amino acids was incompetent for the assembly of polymeric forms of CK2. Altogether, our results support the notion that the subunit of CK2 is a modular protein made by the association of interdependent domains that are involved in its multiple functions.  相似文献   

20.
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号