首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of glucose and other monosaccharide availability in culture medium on production of antibody by human hybridomas has been studied. Human hybridoma cells C5TN produce an anti lung cancer human monoclonal antibody, and the light chain isN-glycosylated at the variable region. When the cell line was grown in the presence of various concentrations of glucose, the antibodies produced changed their antigen-binding activities. Analysis of the light chains produced under these condition revealed that four molecular-mass variant light chains ranging from about 26 to 32 kDa were secreted. The twenty six-kDa species, which corresponds to a non-glycosylated form of the light chain, was recovered after enzymatic removal of allN-linked carbohydrate chains, indicating that the source of the heterogenity of the light chain is due to the varied glycosylation. When the C5TN cells were cultured in medium containing either fructose, mannose or galactose instead of glucose, galactose elevated the antigen binding activity of the antibody more than the other sugars. These results suggest that change of glucose availability affects the antigen-binding activity of the antibodyvia the alteration of the glycosylation.  相似文献   

2.
We report that N-linked oligosaccharide structures can be present on an asparagine residue not adhering to the consensus site motif NX(S/T), where X is not proline, described in the literature. We have observed oligosaccharides on a non-consensus asparaginyl residue in the CH1 constant domain of IgG1 and IgG2 antibodies. The initial findings were obtained from characterization of charge variant populations evident in a recombinant human antibody of the IgG2 subclass. HPLC-MS results indicated that cation-exchange chromatography acidic variant populations were enriched in antibody with a second glycosylation site, in addition to the well documented canonical glycosylation site located in the CH2 domain. Subsequent tryptic and chymotryptic peptide map data indicated that the second glycosylation site was associated with the amino acid sequence TVSWN162SGAL in the CH1 domain of the antibody. This highly atypical modification is present at levels of 0.5–2.0% on most of the recombinant antibodies that have been tested and has also been observed in IgG1 antibodies derived from human donors. Site-directed mutagenesis of the CH1 domain sequence in a recombinant-human IgG1 antibody resulted in an increase in non-consensus glycosylation to 3.15%, a greater than 4-fold increase over the level observed in the wild type, by changing the −1 and +1 amino acids relative to the asparagine residue at position 162. We believe that further understanding of the phenomenon of non-consensus glycosylation can be used to gain fundamental insights into the fidelity of the cellular glycosylation machinery.  相似文献   

3.
Transferrins were isolated by immunoaffinity chromato-graphyfrom chicken serum, chicken embryo serum and from the culturemedium of chicken embryo hepatocytes in primary culture. Theglycovariants of these three transferrins were separated byion-exchange chromatography using a fast protein liquid chromatography(FPLC) system. The structures of the oligosaccharide-alditolsreleased by hydrazinolysis from the glycovariants were comparedafter analysis by a combination of methanolysis, methylatlonanalysis and 1H-NMR spectroscopy. In the three transferrinsanalysed, the oligosaccharides were of the bian-tennary N-acetyllactosaminictype, having several prominent features. In particular, theembryo serum transferrin glycan differed from that of chickenserum transferrin by the presence of a bisecting N-acetylglucosamine,suggesting a developmental change in glycosylation. The glycanstructure of the transferrin secreted by the embryo hepatocytesin primary culture was marked by the presence of fucose (l-6)linked to the core N-acetylglucosamine, suggesting that expressionof the fucosyltransferase activity is dependent on cell cultureconditions. Moreover, comparative analysis of chicken serumtransferrin and ovotransferrin glycans reinforces the idea thatthe glycosylation of two identical poly-peptide chains is organspecific. chicken embryogenesis embryo hepatocytes glycosylation transferrin  相似文献   

4.
Recombinant soluble trimeric influenza A virus (IAV) hemagglutinin (sHA3) has proven an effective vaccine antigen against IAV. Here, we investigate to what extent the glycosylation status of the sHA3 glycoprotein affects its immunogenicity. Different glycosylation forms of subtype H5 trimeric HA protein (sH53) were produced by expression in insect cells and different mammalian cells in the absence and presence of inhibitors of N-glycan-modifying enzymes or by enzymatic removal of the oligosaccharides. The following sH53 preparations were evaluated: (i) HA proteins carrying complex glycans produced in HEK293T cells; (ii) HA proteins carrying Man9GlcNAc2 moieties, expressed in HEK293T cells treated with kifunensine; (iii) HA proteins containing Man5GlcNAc2 moieties derived from HEK293S GnTI(−) cells; (iv) insect cell-produced HA proteins carrying paucimannosidic N-glycans; and (v) HEK293S GnTI(−) cell-produced HA proteins treated with endoglycosidase H, thus carrying side chains composed of only a single N-acetylglucosamine each. The different HA glycosylation states were confirmed by comparative electrophoretic analysis and by mass spectrometric analysis of released glycans. The immunogenicity of the HA preparations was studied in chickens and mice. The results demonstrate that HA proteins carrying terminal mannose moieties induce significantly lower hemagglutination inhibition antibody titers than HA proteins carrying complex glycans or single N-acetylglucosamine side chains. However, the glycosylation state of the HA proteins did not affect the breadth of the antibody response as measured by an HA1 antigen microarray. We conclude that the glycosylation state of recombinant antigens is a factor of significant importance when developing glycoprotein-based vaccines, such as recombinant HA proteins.  相似文献   

5.
A series of five 3-acetamidopropyl β-glycosides of nona-β-(1→6)-glucosamines containing two N-acetylglucosamine residues separated by a different number of glucosamine units with free amino groups have been synthesized using a convergent blockwise approach. Oxazoline glycosylation was used to introduce N-acetylglucosamine residues. These nonasaccharides are structurally related to the poly-N-acetylglucosamine (PNAG) extracellular polysaccharide of Staphylococcus aureus and can be used as models for biochemical and immunological studies.  相似文献   

6.
A hybridoma line, C5TN, produced human monoclonal antibody of which light chain had N-linked carbohydrate chain within the variable region. Some molecular-weight variants of light chain of the antibody were produced by C5TN variants resistant to cytotoxic effect of concanavalin A. The variant antibodies significantly altered the original cross-reactivity with antigens or lost the ability of antigen binding. The variants variously trimmed their carbohydrate chains by glycosidases, showed the changed reactivity or acquired the ability to bind for antigens. The carbohydrate-deficient antibodies from tunicamycin-treated C5TN and the variant clones behaved in a similar manner on antigen-binding reactivity. Furthermore, comparison of antibodies of which light chains have carbohydrate chains sensitive and resistant to some glycosidases showed that carbohydrate chain in variable region of light chain can influence their reactivity with antigen.  相似文献   

7.
8.
The results reported in this paper show two distinct ways for the incorporation ofN-acetylglucosamine into mitochondrial outer membranes. The first one is the glycosylation of dolichol acceptors, which is indicated by the inhibition of the synthesis of these products by the inhibitors of the dolichol intermediates (tunicamycin and GDP). The second one is the incorporation ofN-acetylglucosamine into protein acceptors directly from UDP-N-acetylglucosamine. This second way of glycosylation is only localized in mitochondria outer membranes.The existence of a direct route forN-glycoprotein biosynthesis has been based on the following evidence. First, the synthesis of theN-acetylglucosaminylated protein acceptors was not inhibited by tunicamycin or GDP. Second, the addition of exogenous dolichol-phosphate did not change the rate of biosynthesis of glycosylated protein material. Third, the sequential incorporation ofN-acetylglucosamine and mannose from their nucleotide derivatives in the presence of GDP and tunicamycin led to the synthesis of glycosylated protein material which entirely bound to Concanavalin A-Sepharose. The oligosaccharide moiety of the glycosylated protein material resulting from the direct transfer of sugars from their nucleotide derivatives to the protein acceptor is of theN-glycan type. On sodium dodecylsulphate polyacrylamide gel electrophoresis, this glycosylated material migrated as a marker protein with a molecular weight between 45 000 and 63 000. HPLC chromatofocusing analysis revealed that the fraction studied was anionic. The oligosaccharide moiety of the glycoprotein material can only be elongated by the incorporation ofN-acetylglucosamine and galactose from their nucleotide derivatives.  相似文献   

9.
It is now well established that rheumatoid arthritis patients have reduced levels of galactose on their immunoglobulin G (IgG) molecules compared with normal individuals. We have investigated whether, in an experimentally induced model of arthritis, similar glycosylation changes on IgG are to be found. Serum IgG was isolated from collagen-induced arthritic DBA/1 mice and a control group, and the glycosylation of the IgG in these preparations was compared using lectin blotting. The glycosylation of IgG in immune complexes was also analysed. Arthritic mice exhibited similar glycosylation changes on their IgG as observed for rheumatoid arthritis patients. On average, there was less galactose on the IgG from arthritic mice than from the control group, but this difference was of borderline significance. However, theN-acetylglucosamine content of IgG was significatly elevated in arthritic mice. There was no difference in the sialic acid content of IgG in the two groups. The results for immune complexes were similar to those obtained for serum IgG, but the data were limited by insufficient numbers. The similarity in glycosylation changes in collagen-induced arthritis and in patients with rheumatoid arthritis suggests that common pathogenic mechanisms may be involved.  相似文献   

10.
Summary Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheat-germ agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(1–3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosac-charide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

11.
Gallbladder mucus is mainly composed of glycoproteins, which seem to play a critical role in cholesterol nucleation during gallstone formation. The biosynthetic pathway and sequential processing as well as the characterization of the oligosaccharide sidechains of human gallbladder secretory glycoproteins have not been completely defined. The aim of the present study is the subcellular characterization of the glycoproteins in the principal cells of human gallbladder. Principal cells of normal human gallbladder were studied by means of a variety of cytochemical techniques, including lectin histochemistry, enzyme and chemical treatments, immunocytochemistry and lectin-gold technology. Fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid residues were detected in mucous granules, Golgi apparatus and apical membrane of principal cells. Mannose residues were only observed in dense bodies. Oligosaccharide side-chains of the glycoproteins contained in the biliary mucus are synthesized in the Golgi apparatus of the principal cells of the gallbladder epithelium and are also contained in the mucous granules of these cells. Terminal N-acetylneuraminic acid(2-3)galactose(1-3)N-acetylgalactosamine, N-acetylneuraminic acid(2-3)galactose(1-4)N-acetylglucosamine and galactose(1-4)N-acetylglucosamine sequences are contained in the oligosaccharide chains of gallbladder mucus glycoproteins. The dense bodies detected in the cytoplasm of the principal cells contained N-linked glycoproteins. Mucin-type O-linked glycoproteins were the main components of the mucous granules although some N-linked chains were also detected.  相似文献   

12.
《MABS-AUSTIN》2013,5(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

13.
The unique features of IgA, such as the ability to recruit neutrophils and suppress the inflammatory responses mediated by IgG and IgE, make it a promising antibody isotype for several therapeutic applications. However, in contrast to IgG, reports on plant production of IgA are scarce. We produced IgA1κ and IgG1κ versions of three therapeutic antibodies directed against pro‐inflammatory cytokines in Nicotiana benthamiana: Infliximab and Adalimumab, directed against TNF‐α, and Ustekinumab, directed against the interleukin‐12p40 subunit. We evaluated antibody yield, quality and N‐glycosylation. All six antibodies had comparable levels of expression between 3.5 and 9% of total soluble protein content and were shown to have neutralizing activity in a cell‐based assay. However, IgA1κ‐based Adalimumab and Ustekinumab were poorly secreted compared to their IgG counterparts. Infliximab was poorly secreted regardless of isotype backbone. This corresponded with the observation that both IgA1κ‐ and IgG1κ‐based Infliximab were enriched in oligomannose‐type N‐glycan structures. For IgG1κ‐based Ustekinumab and Adalimumab, the major N‐glycan type was the typical plant complex N‐glycan, biantennary with terminal N‐acetylglucosamine, β1,2‐xylose and core α1,3‐fucose. In contrast, the major N‐glycan on the IgA‐based antibodies was xylosylated, but lacked core α1,3‐fucose and one terminal N‐acetylglucosamine. This type of N‐glycan occurs usually in marginal percentages in plants and was never shown to be the main fraction of a plant‐produced recombinant protein. Our data demonstrate that the antibody isotype may have a profound influence on the type of N‐glycan an antibody receives.  相似文献   

14.
Although Ewing sarcoma protein (EWS) is known to be glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc), the dynamics and stoichiometry of its glycosylation remain obscure. Here, we report a dynamic change in the glycosylation stoichiometry of EWS species during neuronal differentiation of embryonic carcinoma P19 cells. Our findings suggest that O-GlcNAc glycosylation participates in the regulation of EWS functions in neuronal cells.  相似文献   

15.
Three major glycan fractions of 580 kDa (g580), 150 kDa (g150), and 2 kDa (g2) were isolated and purified from Lytechinus pictus sea urchin embryos at the mesenchyme blastula stage by gel filtration and high pressure liquid chromatography. Chemical analysis, by gas chromatography, revealed that g580 is highly sulfated and rich in N-acetylglucosamine, N-acetylgalactosamine, glucuronic acid, and fucose. The g150 fraction is less acidic than g580 and contains high amounts of amino sugars, xylose, and mannose. The g2 fraction is neutral, rich in N-acetylglucosamine, mannose, and galactose. The g580 and g150 fractions are resistant to glycosaminoglycan-degrading enzymes, indicating that they are distinct from the glycosaminoglycans. The g580 fraction resembles, with respect to chemical composition, a previously characterized 200 kDa sponge adhesion glycan (g200). The binding of the monoclonal antibody Block 2, which recognizes a repetitive epitope on g200, as well as of the anti-g580 polyclonal antibodies to both g580 and g200 indicated that these two glycans share similar antigenic determinants. The Fab fragments of the Block 2 antibody, which previously have been shown to inhibit cell adhesion in sponges, also blocked the reaggregation of dissociated sea urchin mesenchyme blastula cells. These results indicate that g580 carries a carbohydrate epitope, similar to the sponge adhesion epitope of g200, which is involved in sea urchin embryonal cell adhesion.  相似文献   

16.
Incubation of a membrane fraction from Saccharomyces cerevisiae with UDP-N-acetyl [14C] glucosamine catalyzes the tranfer of N-acetylglucosamine to an endeenous lipid fraction as well as a methanol-insoluble polymer. The glycolipid was shown to separate into three compounds by thin-layer chromatography. The biosynthesis of two of them could clearly be stimulated by the addition of dolichol monophosphate to the incubation mixture. Evidence is presented that the substances are dolichol pyrophosphate derivatives: dolichol pyrophosphate N-acetylglucosamine and dolichol pyrophosphate di-N-acetylchitobiose. The formation of the chitobiose-containing lipid was increased by reincubation of the glycolipid with non-radioactive UDP-N-acetylglucosamine.The same particulate preparation transferred mannose from GDPmannose to dolichol pyrophosphate di-N-acetylchitobiose, giving rise to a lipid-bound oligosaccharide. Molecular weight determination of the oligosaccharide moiety gave a value of 780, which is consistent with a tetrasaccharide containing two mannose subunits attached to di-N-acetylchitobiose.The methanol-insoluble radioactive product obtained in the presence of UDP-N-acetyl[14C]glucosamine was transformed by pronase treatment to a large extent into dialyzable material. It is suggested that the glycolipids described serve as intermediates in the glycosylation of yeast mannoproteins.  相似文献   

17.
Seed‐specific expression is an appealing alternative technology for the production of recombinant proteins in transgenic plants. Whereas attractive yields of recombinant proteins have been achieved by this method, little attention has been paid to the intracellular deposition and the quality of such products. Here, we demonstrate a comparative study of two antiviral monoclonal antibodies (mAbs) (HA78 against Hepatitis A virus; 2G12 against HIV) expressed in seeds of Arabidopsis wild‐type (wt) plants and glycosylation mutants lacking plant specific N‐glycan residues. We demonstrate that 2G12 is produced with complex N‐glycans at great uniformity in the wt as well as in the glycosylation mutant, carrying a single dominant glycosylation species, GnGnXF and GnGn, respectively. HA78 in contrast, contains additionally to complex N‐glycans significant amounts of oligo‐mannosidic structures, which are typical for endoplasmic reticulum (ER)‐retained proteins. A detailed subcellular localization study demonstrated the deposition of both antibodies virtually exclusively in the extracellular space, illustrating their efficient secretion. In addition, although a KDEL‐tagged version of 2G12 exhibited an ER‐typical N‐glycosylation pattern, it was surprisingly detected in protein storage vacuoles. The different antibody variants showed different levels of degradation with hardly any degradation products detectable for HA78 carrying GnGnXF glycans. Finally, we demonstrate functional integrity of the HA78 and 2G12 glycoforms using viral inhibition assays. Our data therefore demonstrate the usability of transgenic seeds for the generation of mAbs with a controlled N‐glycosylation pattern, thus expanding the possibilities for the production of optimally glycosylated proteins with enhanced biological activities for the use as human therapeutics.  相似文献   

18.
Production of recombinant antibodies against botulinum neurotoxin is necessary for the development of a post-exposure treatment. CHO-DG44 cells were transfected with a plasmid encoding the light and heavy chains of a chimeric monoclonal antibody (S25) against botulism neurotoxin serotype A. Stable cell lines were obtained by dilution cloning and clones were shown to produce nearly equivalent levels of light and heavy chain antibody by an enzyme-linked immunosorbent assay (ELISA). In suspension culture, cells produced 35 μg/ml of chimeric antibody after 6 days, corresponding to a specific antibody productivity of 3.1 pg/cell/day. A method for the harvest and recovery of an antibody against botulism neurotoxin serotype A was investigated utilizing ethylenediamine-N,N′-tetra(methylphosphonic) acid (EDTPA) modified zirconia and MEP-hypercel, a hydrophobic charge interaction chromatography resin. Purification of the S25 antibody was compared to that achieved using rProtein A–Sepharose Fast Flow resin. After the direct load of culture supernatant, analysis by ELISA and gel electrophoresis showed that S25 antibody could be recovered at purities of 41 and 44%, from the EDTPA modified zirconia and MEP-hypercel columns, respectively. Although the purity obtained from each of these columns was low, the ability to withstand high column pressures and nearly 90% recovery of the antibody makes EDTPA modified zirconia well suited as an initial capture step. Combining the EDTPA modified zirconia and HCIC columns in series resulted in both purity and final product yield of 72%.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.  相似文献   

20.
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号