首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo GW  Liu ZH  Jin WQ  Zhang HP  Chen XJ  Zhu YC  Chi ZQ 《Life sciences》2001,68(21):2383-2390
Differences of analgesia and withdrawal response among ohmefentanyl stereoisomers have been studied. In the present study, Quantitative comparison of reinforcing effects of ohmefentanyl stereoisomers and morphine was performed by using a conditioned place preference design in mice. Results showed that morphine and ohmefentanyl stereoisomers were able to increase significantly the time spent in the drug-paired side with respect to vehicle treated animals. A good linear correlation between doses of drugs and number of mice with place preference was found within a given dose range. On the basis of the dose-response curve analysis, ohmefentanyl stereoisomers displayed a significant difference in place preference ED50. The addictive index (analgesic ED50/place preference ED50) was used to assess the addictive potential of drugs. It was demonstrated that the addictive potential of ohmefentanyl stereoisomers did not exhibit a large difference as addictive index. Among these stereoisomers, the addictive potential of compound F9208 was markedly lower than that of morphine.  相似文献   

2.
Effects of angiotensin II and captopril on rewarding properties of morphine   总被引:1,自引:0,他引:1  
The effects of captopril and Ang II on morphine-induced conditioned place preference (CPP) and morphine self-administration in male Wistar rat were investigated. In CPP experiment, injection of captopril before test significantly decreased the difference of the time spent in compartment A between pre- and post-conditioning compared to morphine group. In self- administration experiment number of active lever pressing was significantly greater than passive in morphine group. In captopril group number of active lever pressing was significantly lower than morphine group however, there was not significant difference between active and passive lever pressed number. The results showed that captopril significantly decreased morphine-induced conditional place preference and morphine self-administration but the effect of Ang II was not significant. It can be concluded that RAS may have a role in rewarding properties of morphine.  相似文献   

3.
PKCepsilon controls the transport of endocytosed beta1-integrins to the plasma membrane regulating directional cell motility. Vimentin, an intermediate filament protein upregulated upon epithelial cell transformation, is shown here to be a proximal PKCepsilon target within the recycling integrin compartment. On inhibition of PKC and vimentin phosphorylation, integrins become trapped in vesicles and directional cell motility towards matrix is severely attenuated. In vitro reconstitution assays showed that PKCepsilon dissociates from integrin containing endocytic vesicles in a selectively phosphorylated vimentin containing complex. Mutagenesis of PKC (controlled) sites on vimentin and ectopic expression of the variant leads to the accumulation of intracellular PKCepsilon/integrin positive vesicles. Finally, introduction of ectopic wild-type vimentin is shown to promote cell motility in a PKCepsilon-dependent manner; alanine substitutions in PKC (controlled) sites on vimentin abolishes the ability of vimentin to induce cell migration, whereas the substitution of these sites with acidic residues enables vimentin to rescue motility of PKCepsilon null cells. Our results indicate that PKC-mediated phosphorylation of vimentin is a key process in integrin traffic through the cell.  相似文献   

4.
Antagonists of metabotropic glutamate receptors (mGluRs) have the potential to act as analgesic drugs that may help alleviate chronic pain. This study was done to look at the possible rewarding properties of the mGluR5 antagonist, fenobam, in a cognitive assay. Analgesic conditioned place preference (aCPP) was used to examine the effects of fenobam (30 mg/kg) and the prototypical mGluR5 antagonist, MPEP, and these effects were compared to those of a drug with known analgesic properties, morphine (10 mg/kg). In each experiment, one group of mice received spared nerve injury (SNI) surgery to model chronic pain; the other group received a control sham surgery. Both fenobam and MPEP induced preference in the SNI mice, such that SNI mice spent significantly more time in the mGluR5 antagonist-paired chamber compared to a vehicle-paired chamber. No such preference developed for sham mice. Morphine induced preference in male and female mice in both the SNI and sham groups. The results showed that fenobam and MPEP likely reduced on-going distress in the SNI mice, causing them to prefer the chamber paired with the drug compared to the vehicle-paired chamber. Since sham animals did not prefer the drug-paired chamber, these data demonstrate that mGluR5 antagonism is non-rewarding in the absence of pain-like injury.  相似文献   

5.
Chen ML  Bao F  Zhang YQ  Zhao ZQ 《生理学报》2012,64(4):365-371
The previous study indicated that aquaporin 4 (AQP4) deficiency attenuated opioid physical dependence. However, the underlying mechanism remains unknown. In the present study, the effects of AQP4 deficiency on the expression of three factors, protein kinase C (PKC) α, PKCγ and c-Fos in the spinal cord, which are known to be concerned with spinal neuronal sensitization and opiate dependence, were investigated in AQP4 knockout mice using Western blotting analysis. It was observed that AQP4 deficiency reduced the score of naloxone-precipitated abstinent jumping after repeated morphine administration compared with wild-type (P < 0.001). Meanwhile, the protein levels of PKCα and c-Fos in the spinal cord of AQP4 knockout mice were significantly higher than those in the wild-type mice; while the expression of PKCγ was decreased remarkably by AQP4 knockout during the withdrawal (P < 0.01). These data suggest that AQP4 deficiency-attenuated morphine withdrawal responses may be partially attributed to the changes in the spinal expression of PKCα, PKCγ or c-Fos.  相似文献   

6.
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin ( Gnat3 ), Tas1r3 or Trpm5 . Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.  相似文献   

7.
In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.  相似文献   

8.
Stimulation of cells with G-CSF activates multiple signaling cascades, including the serine/threonine kinase Akt pathway. We show in this study that G-CSF-induced activation of Akt in myeloid 32D was specifically inhibited by treatment with PMA, a protein kinase C (PKC) activator. PMA treatment also rapidly attenuated sustained Akt activation mediated by a carboxy truncated G-CSF receptor, expressed in patients with acute myeloid leukemia evolving from severe congenital neutropenia. The inhibitory effect of PMA was abolished by pretreatment of cells with specific PKC inhibitor GF109203X, suggesting that the PKC pathway negatively regulates Akt activation. Ro31-8820, a PKCepsilon inhibitor, also abrogated PMA-mediated inhibition of Akt activation, whereas rottlerin and Go6976, inhibitors of PKCdelta and PKCalphabetaI, respectively, exhibited no significant effects. Furthermore, overexpression of the wild-type and a constitutively active, but not a kinase-dead, forms of PKCepsilon markedly attenuated Akt activation, and inhibited the proliferation and survival of cells in response to G-CSF. The expression of PKCepsilon was down-regulated with G-CSF-induced terminal granulocytic differentiation. Together, these results implicate PKCepsilon as a negative regulator of Akt activation stimulated by G-CSF and indicate that PKCepsilon plays a negative role in cell proliferation and survival in response to G-CSF.  相似文献   

9.
The present study investigated regulation of histone acetylation by L-type voltage-dependent calcium channels (VDCCs), one of the machineries to provide Ca(2+) signals. Acetylation of histone through the phosphorylation of protein kinase Cγ (PKCγ) in the development of methamphetamine (METH)-induced place preference was demonstrated in the limbic forebrain predominantly but also in the nucleus accumbens of α1C subunit knockout mice. Chronic administration of METH produced a significant place preference in mice, which was dose-dependently inhibited by both chelerythrine (a PKC inhibitor) and nifedipine (an L-type VDCC blocker). Protein levels of acetylated histone H3 and p-PKCγ significantly increased in the limbic forebrain of mice showing METH-induced place preference, and it was also significantly attenuated by pre-treatment with chelerythrine or nifedipine. METH-induced place preference was also significantly attenuated by deletion of half the α1C gene, which is one of the subunits forming Ca(2+) channels. Furthermore, increased acetylation of histone H3 was found in specific gene-promoter regions related to synaptic plasticity, such as Nrxn, Syp, Dlg4, Gria1, Grin2a, Grin2b, Camk2a, Creb, and cyclin-dependent kinase 5, in wild-type mice showing METH-induced place preference, while such enhancement of multiple synaptic plasticity genes was significantly attenuated by a deletion of half the α1C gene. These findings suggest that L-type VDCCs play an important role in the development of METH-induced place preference by facilitating acetylation of histone H3 in association with enhanced expression of synaptic plasticity genes via PKCγ phosphorylation following an increase in the intracellular Ca(2+) concentration.  相似文献   

10.
The effects of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, on morphine-induced place preference were examined in mice. Morphine (1-5 mg/kg, s.c.) produced a dose-related place preference in mice. Ketamine alone (3, 10 mg/kg, i.p.), like dizocilpine alone (0.2 mg/ kg, i.p.), also produced a preference for the drug-associated place. Pretreatment with ketamine (10 mg/ kg, i.p.) or dizocilpine (0.1 and 0.2 mg/kg, i.p) suppressed the place preference produced by morphine in a dose-dependent manner. These findings provide the first demonstration that ketamine alone produces a place preference using the conditioned place preference (CPP) paradigm, but that mice treated with ketamine combined with morphine show neither a morphine- nor a ketamine-induced place preference.  相似文献   

11.
Morphine-6-glucuronide contributes to rewarding effects of opiates   总被引:1,自引:0,他引:1  
F V Abbott  K B Franklin 《Life sciences》1991,48(12):1157-1163
It was recently confirmed that a metabolite of morphine, morphine-6-glucuronide (M6G), is a long lasting, powerful analgesic in humans and animals and may account for a major component of clinical opiate analgesia. It is reported here that M6G is also a powerful behavioral reinforcer in the conditioned place preference test in rats, indicating that it has rewarding properties, and is therefore likely to have abuse potential. The induction of a place preference by M6G is blocked by naltrexone, indicating that the rewarding effect of M6G is mediated by opioid receptors. Given systemically M6G is approximately equipotent with morphine. When given intracerebroventricularly to bypass the blood-brain barrier, M6G is 146 times more potent than morphine in the place preference test. Thus 6-substituted metabolites of opiates may play a more significant role in the effects of opiates than has been previously assumed.  相似文献   

12.
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.  相似文献   

13.
Suzuki T  Kato H  Tsuda M  Suzuki H  Misawa M 《Life sciences》1999,64(12):PL151-PL156
The effects of ifenprodil, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, on the morphine-induced place preference were examined in mice. Morphine (1-5 mg/kg, s.c.) produced a dose-related place preference in mice. In contrast, ifenprodil alone (5-20 mg/kg, i.p.) did not produce either preference or aversion for the drug-associated place. Pretreatment with ifenprodil (5-20 mg/kg, i.p.) suppressed the place preference produced by morphine in a dose-dependent manner. These results indicate that ifenprodil suppresses the rewarding effect produced by morphine.  相似文献   

14.
Receptors for activated C kinase (RACKs) have been shown to facilitate activation of protein kinase C (PKC). However, it is unknown whether PKC activation modulates RACK protein expression and PKC-RACK interactions. This issue was studied in two PKCepsilon transgenic lines exhibiting dichotomous cardiac phenotypes: one exhibits increased resistance to myocardial ischemia (cardioprotected phenotype) induced by a modest increase in PKCepsilon activity (228 +/- 23% of control), whereas the other exhibits cardiac hypertrophy and failure (hypertrophied phenotype) induced by a marked increase in PKCepsilon activity (452 +/- 28% of control). Our data demonstrate that activation of PKC modulates the expression of RACK isotypes and PKC-RACK interactions in a PKCepsilon activity- and dosage-dependent fashion. We found that, in mice displaying the cardioprotected phenotype, activation of PKCepsilon enhanced RACK2 expression (178 +/- 13% of control) and particulate PKCepsilon-RACK2 protein-protein interactions (178 +/- 18% of control). In contrast, in mice displaying the hypertrophied phenotype, there was not only an increase in RACK2 expression (330 +/- 33% of control) and particulate PKCepsilon-RACK2 interactions (154 +/- 14% of control) but also in RACK1 protein expression (174 +/- 10% of control). Most notably, PKCepsilon-RACK1 interactions were identified in this line. With the use of transgenic mice expressing a dominant negative PKCepsilon, we found that the changes in RACK expression as well as the attending cardiac phenotypes were dependent on PKCepsilon activity. Our observations demonstrate that RACK expression is dynamically regulated by PKCepsilon and suggest that differential patterns of PKCepsilon-RACK interactions may be important determinants of PKCepsilon-dependent cardiac phenotypes.  相似文献   

15.
Xiao L  Zhao Q  Du Y  Yuan C  Solaro RJ  Buttrick PM 《Biochemistry》2007,46(23):7054-7061
Cardiac myosin binding protein C (cMyBPC) phosphorylation is essential for normal cardiac function. Although PKC was reported to phosphorylate cMyBPC in vitro, the relevant PKC isoforms and functions of PKC-mediated cMyBPC phosphorylation are unknown. We recently reported that a transgenic mouse model with cardiac-specific overexpression of PKCepsilon (PKCepsilon TG) displayed enhanced sarcomeric protein phosphorylation and dilated cardiomyopathy. In the present study, we have investigated cMyBPC phosphorylation in PKCepsilon TG mice. Western blotting and two-dimensional gel electrophoresis demonstrated a significant increase in cMyBPC serine (Ser) phosphorylation in 12-month-old TG mice compared to wild type (WT). In vitro PKCepsilon treatment of myofibrils increased the level of cMyBPC Ser phosphorylation in WT mice to that in TG mice, whereas treatment of TG myofibrils with PKCepsilon showed only a minimal increase in cMyBPC Ser phosphorylation. Three peptide motifs of cMyBPC were identified as the potential PKCepsilon consensus sites including a 100% matched motif at Ser302 and two nearly matched motifs at Ser811 and Ser1203. We treated synthetic peptides corresponding to the sequences of these three motifs with PKCepsilon and determined phosphorylation by mass spectrometry and ELISA assay. PKCepsilon induced phosphorylation at the Ser302 site but not at the Ser811 or Ser1203 sites. A S302A point mutation in the Ser302 peptide abolished the PKCepsilon-dependent phosphorylation. Taken together, our data show that the Ser302 on mouse cMyBPC is a likely PKCepsilon phosphorylation site both in vivo and in vitro and may contribute to the dilated cardiomyopathy associated with increased PKCepsilon activity.  相似文献   

16.
l -Kyotorphin ( l -KTP), an endogenous analgesic neuropeptide, is a substrate for aminopeptidases and a proton-coupled oligopeptide transporter, PEPT2. This study examined the CSF efflux, antinociceptive response, and hydrolysis kinetics in brain of l -KTP and its synthetic diastereomer d -kyotorphin ( d -KTP) in wild-type and Pept2 null mice. CSF clearance of l -KTP was slower in Pept2 null mice than in wild-type animals, and this difference was reflected in greater l -KTP-induced analgesia in Pept2 null mice. Moreover, dose-response analyses showed that the ED50 of l -KTP in Pept2 -deficient animals was one-fifth of the value observed in Pept2 -competent animals (4 vs. 21 nmol for null vs. wild-type mice, respectively). In contrast, the ED50 of d -KTP was very similar between the two genotypes (9–10 nmol). Likewise, there was little difference between genotypes in slope factor or baseline effects of l -KTP and d -KTP. The enhanced antinociceptive response to l -KTP in Pept2 null mice could not be explained by differences in neuropeptide degradation as Vmax and Km values did not differ between genotypes. Our results demonstrate that PEPT2 can significantly impact the analgesic response to an endogenous neuropeptide by altering CSF (and presumably brain interstitial fluid) concentrations and that it may influence the disposition and response to exogenous peptide/mimetic substrates.  相似文献   

17.
Until recently, little was known about the possible physiological functions of the M(5) muscarinic acetylcholine receptor subtype, the last member of the muscarinic receptor family (M(1)-M(5)) to be cloned. To learn more about the potential physiological roles of this receptor subtype, we generated and analyzed M(5) receptor-deficient mice (M5 -/- mice). Strikingly, acetylcholine, a potent dilator of most vascular beds, virtually lost the ability to dilate cerebral arteries and arterioles in M5 -/- mice, suggesting that endothelial M(5) receptors mediate this activity in wild-type mice. This effect was specific for cerebral blood vessels, since acetylcholine-mediated dilation of extra-cerebral arteries remained fully intact in M5 -/- mice. In addition, in vitro neurotransmitter release experiments indicated that M(5) receptors located on dopaminergic nerve terminals play a role in facilitating muscarinic agonist-induced dopamine release in the striatum, consistent with the observation that the dopaminergic neurons innervating the striatum almost exclusively express the M(5) receptor subtype. We also found that the rewarding effects of morphine, the prototypical opiate analgesic, were substantially reduced in M5 -/- mice, as measured in the conditioned place preference paradigm. Furthermore, both the somatic and affective components of naloxone-induced morphine withdrawal symptoms were significantly attenuated in M5 -/- mice. It is likely that these behavioral deficits are caused by the lack of mesolimbic M(5) receptors, activation of which is known to stimulate dopamine release in the nucleus accumbens. These results convincingly demonstrate that the M(5) muscarinic receptor is involved in modulating several important pharmacological and behavioral functions. These findings may lead to novel therapeutic strategies for the treatment of drug addiction and certain cerebrovascular disorders.  相似文献   

18.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. Neurotrophic factors are crucial for the plasticity of central nervous system and may be involved in long-term responses to drug exposure. To study the effects of reduced GDNF on dopaminergic behaviour related to addiction, we compared the effects of morphine on locomotor activity, conditioned place preference (CPP) and extracellular accumbal dopamine in heterozygous GDNF knockout mice (GDNF+/-) with those in their wild-type (Wt) littermates. When morphine 30 mg/kg was administered daily for 4 days, tolerance developed towards its locomotor stimulatory action only in the GDNF+/- mice. A morphine 5 mg/kg challenge dose stimulated locomotor activity only in the GDNF+/- mice withdrawn for 96 h from repeated morphine treatment, whereas clear and similar sensitization of the locomotor response was seen after a 10 mg/kg challenge dose in mice of both genotypes. Morphine-induced CPP developed initially similarly in Wt and GDNF+/- mice, but it lasted longer in the Wt mice. The small challenge dose of morphine increased accumbal dopamine output slightly more in the GDNF+/- mice than in the Wt mice, but doubling the challenge dose caused a dose-dependent response only in the Wt mice. In addition, repeated morphine treatment counteracted the increase in the accumbal extracellular dopamine concentration we previously found in drug-naive GDNF+/- mice. Thus, reduced endogenous GDNF level alters the dopaminergic behavioural effects to repeatedly administered morphine, emphasizing the involvement of GDNF in the neuroplastic changes related to long-term effects of drugs of abuse.  相似文献   

19.
Our laboratory has conducted multiple functional proteomic analyses to characterize the components of protein kinase C (PKC)epsilon cardioprotective signaling complexes and found that activation of PKCepsilon induces dynamic modulation of these complexes. In addition, it is known that signal transduction within a complex involves the formation of modules, one of which has been shown to include PKCepsilon and Src tyrosine kinase in the rabbit heart. However, the cellular mechanisms that define the assembly of PKCepsilon modules remain largely unknown. To address this issue, the interactions between PKCepsilon and Src were studied. We used recombinant proteins of wild-type PKCepsilon (PKCepsilon-WT) and open conformation mutants of the kinase (PKCepsilon-AE5 and PKCepsilon-AN59), the regulatory and catalytic domains of PKCepsilon, along with glutathione-S-transferase (GST) fusion proteins of Src (GST-Src) and two domains of Src (GST-SH2 and GST-SH3). GST pulldown assays demonstrated that Src and PKCepsilon are binding partners and that the interaction between PKCepsilon and Src appears to involve multiple sites. This finding was supported for endogenous PKCepsilon and Src in the murine heart using immunofluorescence-based confocal microscopy and coimmunoprecipitation. Furthermore, PKCepsilon-WT and GST-Src interactions were significantly enhanced in the presence of phosphatidyl-L-serine, an activator of PKC, indicating that Src favors interaction with activated PKCepsilon. This finding was confirmed when the PKCepsilon-WT was replaced with PKCepsilon-AE5 or PKCepsilon-AN59, demonstrating that the conformation of PKCepsilon is a critical determinant of its interactions with Src. Together, these results illustrate that formation of a signaling module between PKCepsilon and Src involves specific domains within the two molecules and is governed by the molecular conformation of PKCepsilon.  相似文献   

20.
Bremazocine: a potent, long-acting opiate kappa-agonist   总被引:15,自引:0,他引:15  
The benzomorphan analogue bremazocine is a potent, centrally-acting analgesic with a long duration of action. In animal models it is free of physical and psychological dependence liability, produces no respiratory depression, and has a variety of other properties which justify its classification as a putative opiate kappa-receptor agonist.Binding studies with tritiated (?)-bremazocine on rat brain membrane preparations show that this molecule differs in its binding properties from previously investigated exogenous or endogenous opioids. Studies on isolated guinea-pig ileum and mouse vas deferens indicate a preference for opiate kappa-receptors.In mice (hot plate, tail flick) and rhesus monkeys (shock titration), bremazocine is a potent analgesic with a long duration of action. Here also, the actions of the antagonists naloxone and Mr 2266 suggest a preference for opiate kappa-receptors.Bremazocine differs from morphine in the non-production of mydriasis and the Straub tail phenomenon in mice, in its lack of effects on respiration in rats, in that it is not self-administered by rhesus monkeys, and in that programmed administration in the same species does not lead to a morphine-like withdrawal syndrome upon cessation of drug treatment or upon naloxone challenge. Prolonged treatment of animals with bremazocine leads to tolerance to its analgesic effects; morphine treatment of such tolerant animals causes analgesia. Conversely, treatment of morphine-tolerant animals with bremazocine does not cause analgesia; these findings suggest that morphine and bremazocine interact with different subpopulations of opiate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号