首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Significant enhancement of P3HT (poly(3‐hexylthiophene)):PC61BM ([6,6]‐phenyl C61‐butyric acid methyl ester) photovoltaic devices using different patterns of electrospun Ag/PVP composite nanofibers, including nonwoven, aligned, and crossed patterns, is reported. The composite electrospun nanofibers are prepared using in situ reduction of silver (Ag) nanoparticles in Ag/poly(vinyl pyrrolidone) (PVP) via a two‐fluid coaxial electrospinning technique. The composition, crystalline orientation, and particle size of Ag are manipulated by controlling the core/shell solution concentration. The smallest diameter of the composite nanofibers leads to the highest orientation of the Ag nanoparticles and results in the largest conductivity due to geometric confinement. Such composite nanofibers exhibit the surface plasmon resonance (SPR) effect, which provides near field enhancement of electromagnetic field around active layer. Additionally, composite nanofibers with the crossed or nonwoven patterns further enhance high carrier mobility, compared to that of the aligned pattern. It leads to the 18.7% enhancement of the power conversion efficiency of photovoltaic cell compared to the parent device. The results indicate that the high conductivity and SPR effect of the Ag/PVP electrospun nanofibers can significantly improve the photocurrent and PCE, leading to promising organic solar cell applications.  相似文献   

2.
Electrospray mass spectra have been observed for a number of alkene and arene complexes of Ag(I) formed by the interaction of AgNO3 and the organometallic ligand in water/methanol solution. The ES mass spectra show that almost all the alkene and arene ligands in stoichiometric excess form labile 1:2 cationic complexes with Ag(I) which are easily decomposed by collisional activation to the 1:1 species. However, with a deficiency of organic ligand polymeric species are observed. The cation [Ag(cod)2]+ (cod=1,5-cyclooctadiene) was reacted with a variety of other potential ligands, such as PPh3, AsPh3, PhSCH2SPh etc. In most cases, mixed complexes [Ag(cod)(ligand)]+ were observed, and excess ligand usually produced [Ag(ligand)2]+.  相似文献   

3.
An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2′:5′,2″-terthiophene-3′-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H2O2 reduction. The catalytic reduction was monitored amperometrically at −0.4 V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25 pg/ml and the detection limit was determined to be 2 pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG.  相似文献   

4.
研究AgNO3对黄芩组培玻璃化苗的逆转作用,并在此基础上对逆转的黄芩组培玻璃化苗的活性成分含量及活性进行分析。结果表明,AgNO3对黄芩的玻璃化苗具有明显的逆转作用,且这种逆转作用受AgNO3浓度的影响。在AgNO3的浓度为4 mg·L^-1时,玻璃化苗的逆转率最高为88%,且逆转的黄芩苗的生长状态最好。在此基础上,对逆转1个月的黄芩玻璃化苗的活性成分含量及生物活性进行研究。逆转的黄芩玻璃化苗体内黄芩苷的含量为68.6 mg·g^-1,明显高于玻璃化苗(38.3 mg·g^-1),但低于正常的组培苗(108.2 mg·g^-1)。此外,提取物的抗氧化、抗菌和抗肿瘤实验结果显示,逆转的黄芩玻璃化组培苗明显好于玻璃化苗,但仍低于正常的组培苗。以上研究结果表明,AgNO3对黄芩组培玻璃化苗具有较好的逆转及恢复作用。  相似文献   

5.
The study on the interaction of artemisinin with bovine serum albumin (BSA) has been undertaken at three temperatures, 289, 296 and 303 K and investigated the effect of common ions and UV C (253.7 nm) irradiation on the binding of artemisinin with BSA. The binding mode, the binding constant and the protein structure changes in the presence of artemisinin in aqueous solution at pH 7.40 have been evaluated using fluorescence, UV–vis and Fourier transform infrared (FT-IR) spectroscopy. The quenching constant Kq, Ksv and the association constant K were calculated according to Stern–Volmer equation based on the quenching of the fluorescence of BSA. The thermodynamic parameters, the enthalpy (ΔH) and the entropy change (ΔS) were estimated to be −3.625 kJ mol−1 and 107.419 J mol−1 K−1 using the van’t Hoff equation. The displacement experiment shows that artemisinin can bind to the subdomain IIA. The distance between the tryptophan residues in BSA and artemisinin bound to site I was estimated to be 2.22 nm using Föster's equation on the basis of fluorescence energy transfer. The decreased binding constant in the presence of enough common ions and UV C exposure, indicates that common ions and UV C irradiation have effect on artemisinin binding to BSA.  相似文献   

6.
Ultraviolet (UV) radiation has recently been demonstrated to drive an aerobic production of methane (CH4) from plant tissues and pectins, as do agents that generate reactive oxygen species (ROS) in vivo independently of UV. As the major building-blocks of pectin do not absorb solar UV found at the earth's surface (i.e. >280 nm), we explored the hypothesis that UV radiation affects pectin indirectly via generation of ROS which themselves release CH4 from pectin. Decreasing the UV absorbance of commercial pectin by ethanol washing diminished UV-dependent CH4 production, and this was restored by the addition of the UV photosensitizer tryptophan. Certain ROS scavengers [mannitol, a hydroxyl radical (OH) scavenger; 1,4-diazabicyclo[2.2.2] octane; and iodide] strongly inhibited UV-induced CH4 production from dry pectin. Furthermore, pectin solutions emitted CH4 in darkness upon the addition of OH, but not superoxide or H2O2. Model carbohydrates reacted similarly if they possessed —CH3 groups [e.g. methyl esters or (more weakly) acetyl esters but not rhamnose]. We conclude that UV evokes CH4 production from pectic methyl groups by interacting with UV photosensitizers to generate OH. We suggest that diverse processes generating OH could contribute to CH4 emissions independently of UV irradiation, and that environmental stresses and constitutive physiological processes generating ROS require careful evaluation in studies of CH4 formation from foliage.  相似文献   

7.
A poly(vinylalcohol) (PVA) electrospun/magnetic/chitosan nanocomposite fibrous cross-linked network was fabricated using in situ cross-linking electrospinning technique and used for bovine serum albumin (BSA) loading and release applications. Sodium tripolyphosphate (TPP) and glutaraldehyde (GA) were used as cross-linkers which modified magnetic-Fe3O4 chitosan as Fe3O4/CS/TPP and Fe3O4/CS/GA, respectively. BSA was used as a model protein drugs which was encapsulated to form Fe3O4/CS/TPP/BSA and Fe3O4/CS/GA/BSA nanoparticles. The composites were electrospun with PVA to form nanofibers. Nanofibers were characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The characterization results suggest that Fe3O4 nanoparticles with average size of 45 nm were successfully bound on the surface of chitosan. The cross-linked nanofibers were found to contain uniformly dispersed Fe3O4 nanoparticles. The size and morphology of the nanofibers network was controlled by varying the cross-linker type. FTIR data show that these two polymers have intermolecular interactions. The sample with TPP cross-linker showed an enhancement of the controlled release properties of BSA during 30-h experimental investigation.

Graphical Abstract

Open in a separate windowᅟKEY WORDS: cross-linker, electrospun, magnetite, mano-composite, protein loading  相似文献   

8.
Optical absorption and fluorescence emission techniques were employed to investigate the size effects of silver nanoparticles (Ag NPs) on 1,4-dihydroxy-3-methylanthracene-9,10-dione (DHMAD). Silver nanoparticles of different sizes were prepared by Creighton method under microwave irradiation. The prepared Ag NPs show the surface plasmon band around 400 nm. Fluorescence quenching of DHMAD by Ag NPs was found to increase with an increase in the size of Ag NPs. The fluorescence quenching is explained by resonant energy transfer mechanism between DHMAD and Ag NPs, orientation of DHMAD on silver nanoparticles through chemisorptions. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the ground and excited state behavior of DHMAD and DHMAD + Ag system.  相似文献   

9.
Preparation and characterization of YADH-bound magnetic nanoparticles   总被引:17,自引:0,他引:17  
The covalently binding of yeast alcohol dehydrogenase (YADH) to magnetic nanoparticles via carbodiimide activation was studied. The magnetic nanoparticles Fe3O4 with a mean diameter of 10.6 nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. Transmission electron microscopy (TEM) micrographs showed that the magnetic nanoparticles remained discrete and had no significant change in size after binding YADH. X-ray diffraction (XRD) patterns indicated both the magnetic nanoparticles before and after binding YADH were pure Fe3O4. Magnetic measurement revealed the resultant magnetic nanoparticles were superparamagnetic characteristics, and their saturation magnetization was reduced only slightly after enzyme binding. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of YADH to magnetic nanoparticles and suggested a possible binding mechanism. In addition, the measurement of protein content revealed that the maximum weight ratio of YADH bound to magnetic nanoparticles was 0.125, below which the binding efficiency of YADH was almost 100%. The kinetic measurements indicated the bound YADH retained 62% of its original activity and exhibited a 10-fold improved stability than did the free enzyme. The maximum specific activities and Michaelis constants were also determined.  相似文献   

10.
Candida rugosa lipase was entrapped in hybrid organic–inorganic sol-gel powder prepared by acid-catalyzed polymerization of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes, and used in catalyzing esterification reactions between ethanol and butyric acid in hexane. Optimum preparation conditions were studied, which are gels made from propyltrimethoxysilane (PTMS)/TMOS molar ratio=4:1, hydrolysis time of silane precursor=30 min, water/silane molar ratio=24, enzyme loading=6.25% (w/w) of gel, and 1 mg PVA/mg lipase. The percentage of protein immobilization was 95% and the resulting lipase specific activity was 59 times higher than that of a non-immobilized lyophilized lipase. To prepare magnetic lipase-immobilized sol-gel powder (MLSP) for easier recovery of the biocatalyst, Fe3O4 nanoparticles were prepared and co-entrapped with lipase during gel formation. This procedure induced surface morphological change of the sol-gel powder and showed adverse effect on enzyme activity. Hence, although only 9% decrease in protein immobilization efficiency was observed, the corresponding reduction in enzyme activity could be up to 45% when sol-gel powder was doped with 25% (v/v) Fe3O4 magnetic nanoparticles solution. Lipase-immobilized sol-gel polymer was also formed within the pores of different porous supports to improve its mechanical stability. Non-woven fabric, with a medium pore size of all the supports tested, was found to be the best support for this purpose. The thermal stability of lipase increased 55-fold upon entrapment in sol-gel materials. The half-lives of all forms of sol-gel-immobilized lipase were 4 months at 40 °C in hexane.  相似文献   

11.
Rainbow trout Oncorhynchus mykiss ( c . 60 g) were exposed for 1 week to 0·1 μM silver as AgNO3 in ion poor water (Ca c . 150 μM, pH c . 8, water temperature 13° C) with or without waterborne organic matter (27 mg C l−1 as Aldrich humic acid), thiosulphate (5 μM Na2S2O3) or chloride (4 mM KCl). Organic matter decreased Ag accumulation by the gills initially, but did not decrease Ag accumulation by plasma or liver. Thiosulphate decreased the amount of Ag accumulated by the gills for the entire 1 week exposure but had no effect on Ag concentrations in the plasma, liver or bile. Chloride had no effect on Ag uptake in any of the tissues examined. All three complexing agents reduced the decreases in plasma Na and Cl concentrations caused by Ag. To study the effects of waterborne complexing agents on Ag depuration, rainbow trout were exposed to 0·1 μM AgNO3 for 1 week then placed for 8 days in Ag‐free, ion poor water with or without waterborne organic matter (55 mg C l−1) or thiosulphate (5 μM). These complexing agents did not alter depuration of Ag from the gills, plasma, liver or bile. Thus, once Ag has entered a fish, subsequent elimination of internal Ag is not affected by external complexing agents.  相似文献   

12.
凤丹种子具有很深的休眠特性。本实验以AgNO3、GA3、KT、TDZ和4℃低温处理凤丹种子,探讨解除其上胚轴休眠的途径。结果表明,AgNO3、GA3和低温(4℃)处理能加快凤丹种子萌发并提高发芽率,且不同程度地改善幼苗的鲜重、株高、根系等生长指标。  相似文献   

13.
Anaeromyxobacter dehalogenans strain 2CP-C reduces U(VI) and Tc(VII) to U(IV)O2(s) (uraninite) and Tc(IV)O2(S) respectively. Kinetic studies with resting cells revealed that U(VI) or Tc(VII) reduction rates using H2 as electron donor exceeded those observed in acetate-amended incubations. The reduction of U(VI) by A. dehalogenans 2CP-C resulted in extracellular accumulation of ∼5 nm uraninite nanoparticles in association with a lectin-binding extracellular polymeric substance (EPS). The electron donor did not affect UO2(S) nanoparticle size or association with EPS, but the utilization of acetate as the source of reducing equivalents resulted in distinct UO2(S) nanoparticle aggregates that were ∼50 nm in diameter. In contrast, reduction of Tc(VII) by A. dehalogenans 2CP-C cell suspensions produced dense clusters of TcO2 particles, which were localized within the cell periplasm and on the outside of the outer membrane. In addition to direct reduction, A. dehalogenans 2CP-C cell suspensions reduced Tc(VII) indirectly via an Fe(II)-mediated mechanism. Fe(II) produced by strain 2CP-C from either ferrihydrite or Hanford Site sediment rapidly removed 99Tc(VII)O4 from solution. These findings expand our knowledge of the radionuclide reduction processes catalysed by Anaeromyxobacter spp. that may influence the fate and transport of radionuclide contaminants in the subsurface.  相似文献   

14.
Chitosan-based, defect-free nanofibers with average diameters ranging from 62 +/- 9 nm to 129 +/- 16 nm were fabricated via electrospinning blended solutions of chitosan and polyethylene oxide (PEO). Several solution parameters such as acetic acid concentration, polymer concentration, and polymer molecular weight were investigated to optimize fiber consistency and diameter. These parameters were evaluated using the rheological properties of the solutions as well as images produced by scanning electron microscopy (SEM) of the electrospun nanofibers. Generally, SEM imaging demonstrated that as total polymer concentration (chitosan + PEO) increased, the number of beads decreased, and as chitosan concentration increased, fiber diameter decreased. Chitosan-PEO solutions phase separate over time; as a result, blended solutions were able to be electrospun with the weakest electric field and the least amount of complications when solutions were electrospun within 24 h of initially being blended. The addition of NaCl stabilized these solutions and increased the time the blended solutions could be stored before electrospinning. Pure chitosan nanofibers with high degrees of deacetylation (about 80%) were unable to be produced. When attempting to electrospin highly deacetylated chitosan from aqueous acetic acid at concentrations above the entanglement concentration, the electric field was insufficient to overcome the combined effect of the surface tension and viscosity of the solution. Therefore, the degree of deacetylation is an extremely important parameter to consider when attempting to electrospin chitosan.  相似文献   

15.
Frozen sections of avian tissue fixed 7 days or longer in 10% formalin or formol-saline are cut at 20-50 μ, left in distilled water for 2 hr, and placed in 0.002% aqueous AgNO3 for 3-4 days. Subsequent procedure is essentially that of Weddell and Glees. Sections are placed in 20% AgNO3 for 30 min, then carried through 3 baths of 3% formalin in less than 10 min. Immediately thereafter they are washed 1-2 sec in a 0.1% solution of NH4OH (cone) and placed in the ammoniacal silver solution (made with 20% AgNO3) until the nerves become distinct, as seen under a microscope; usually, in about 15 min. After washing briefly, the sections are fixed in 5% Na2S2O3 for 3-10 min, dehydrated, cleared, and mounted in the usual way.  相似文献   

16.
Cyclic voltammetry at potential range − 1.1 to 0.5 V from aqueous buffer solution (pH 7) containing CoCl2 produced a well defined cobalt oxide (CoOx) nanoparticles deposited on the surface of glassy carbon electrode. The morphology of the modified surface and cobalt oxide formation was examined with SEM and cyclic voltammetry techniques. Hemoglobin (Hb) was successfully immobilized in cobalt-oxide nanoparticles modified glassy carbon electrode. Immobilization of hemoglobin onto cobalt oxide nanoparticles have been investigated by cyclic voltammetry and UV–visible spectroscopy. The entrapped protein can take direct electron transfer in cobalt-oxide film. A pair of well defined, quasi-reversible cyclic voltammetric peaks at about − 0.08 V vs. SCE (pH 7), characteristic of heme redox couple (Fe(III)/Fe(II)) of hemoglobin, and the response showed surface controlled electrode process. The dependence of formal potential (E0′) on the solution pH (56 mV pH− 1) indicated that the direct electron transfer reaction of hemoglobin was a one-electron transfer coupled with a one proton transfer reaction process. The average surface coverage of Hb immobilized on the cobalt oxide nanoparticles was about 5.2536 × 10− 11 mol cm− 2, indicating high loading ability of nanoparticles for hemoglobin entrapment. The heterogeneous electron transfer rate constant (ks) was 1.43 s− 1, indicating great of facilitation of the electron transfer between Hb and electrodeposited cobalt oxide nanoparticles. Modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. The Michaels–Menten constant Km of 0.38 mM, indicating that the Hb immobilized onto cobalt oxide film retained its peroxidases activity. The biosensor exhibited a fast amperometric response < 5 s, a linear response over a wide concentration range 5 μM to 700 μM and a low detection limit 0.5 μM. According to the direct electron transfer property and enhanced activity of Hb in cobalt oxide film, a third generation reagentless biosensor without using any electron transfer mediator or specific reagent can be constructed for determination of hydrogen peroxide in anaerobic solutions.  相似文献   

17.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

18.
Electrospun blend nanofibers were fabricated from chitosan (1,000 kDa, 80% DDA) and poly(ethylene oxide) (PEO; 900 kDa) at a ratio of 3:1 dispersed in 50% and 90% acetic acid. The influence of surfactants on the production of electrospun nanofibers was investigated by adding nonionic polyoxyethylene glycol dodecyl ether (Brij 35), anionic sodium dodecyl sulfate, or cationic dodecyl trimethyl ammonium bromide below, at, and above their specific critical micellar concentration to the polymer blend solution. Viscosity, conductivity, and surface tension of polymer solutions, as well as morphology and composition, of nanofibers containing surfactants were determined. Pure chitosan did not form fibers and was instead deposited as beads. Addition of PEO and an increasing concentration of surfactants induced spinnability and yielded larger fibers with diameters ranging from 10 to 240 nm. Surfactants affected morphology yielding needle-like, smooth, or beaded fibers. Compositional analysis revealed that nanofibers consisted of both polymers and surfactants with concentration of the constituents in nanofibers differing from that in polymer solutions. Results suggest that surfactants may modulate polymer–polymer interactions thus influencing the morphology and composition of deposited nanostructures.  相似文献   

19.
研究表明静电纺丝可以制备出模拟细胞外基质的三维结构,其中限制静电纺丝纤维支架应用的问题之一就是纤维排列紧密导致支架的孔径较小,从而阻碍了细胞的浸入,组织中血管化的形成以及支架与宿主细胞的融合。为了增大支架的孔径,提高孔隙率,许多研究者提出了相应的策略。本文综述了多种制备大孔径静电纺丝纤维支架的方法,主要包括不同接收装置控制电场分布、盐粒子/聚合物析出法、水浴接收、低温静电纺丝以及激光/紫外烧蚀法等,以上的方法都能够有效的增大静电纺丝三维支架的孔径,进而提高了细胞的浸润性、营养物质的传输以及废物的排出,为静电纺丝纤维支架在组织工程中的应用奠定了基础。  相似文献   

20.
Ferritins are ubiquitous iron storage and detoxification proteins distributed throughout the plant and animal kingdoms. Mammalian ferritins oxidize and accumulate iron as a ferrihydrite mineral within a shell-like protein cavity. Iron deposition utilizes both O2 and H2O2 as oxidants for Fe2+ where oxidation can occur either at protein ferroxidase centers or directly on the surface of the growing mineral core. The present study was undertaken to determine whether the nature of the mineral core formed depends on the protein ferroxidase center versus mineral surface mechanism and on H2O2 versus O2 as the oxidant. The data reveal that similar cores are produced in all instances, suggesting that the structure of the core is thermodynamically, not kinetically controlled. Cores averaging 500 Fe/protein shell and diameter  2.6 nm were prepared and exhibited superparamagnetic blocking temperatures of 19 and 22 K for the H2O2 and O2 oxidized samples, respectively. The observed blocking temperatures are consistent with the unexpectedly large effective anisotropy constant Keff = 312 kJ/m3 recently reported for ferrihydrite nanoparticles formed in reverse micelles [E.L. Duarte, R. Itri, E. Lima Jr., M.S. Batista, T.S. Berquó and G.F. Goya, Large Magnetic Anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles, Nanotechnology 17 (2006) 5549–5555.]. All ferritin samples exhibited two magnetic phases present in nearly equal amounts and ascribed to iron spins at the surface and in the interior of the nanoparticle. At 4.2 K, the surface spins exhibit hyperfine fields, Hhf, of 436 and 445 kOe for the H2O2 and O2 samples, respectively. As expected, the spins in the interior of the core exhibit larger Hhf values, i.e. 478 and 486 kOe for the H2O2 and O2 samples, respectively. The slightly smaller hyperfine field distribution DHhf for both surface (78 kOe vs. 92 kOe) and interior spins (45 kOe vs. 54 kOe) of the O2 sample compared to the H2O2 samples implies that the former is somewhat more crystalline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号