首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In self‐incompatible Solanaceae, the pistil protein S‐RNase contributes to S‐specific pollen rejection in conspecific crosses, as well as to rejecting pollen from foreign species or whole clades. However, S‐RNase alone is not sufficient for either type of pollen rejection. We describe a thioredoxin (Trx) type h from Nicotiana alata, NaTrxh, which interacts with and reduces S‐RNase in vitro. Here, we show that expressing a redox‐inactive mutant, NaTrxhSS, suppresses both S‐specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia. Biochemical experiments provide evidence that NaTrxh specifically reduces the Cys155‐Cys185 disulphide bond of SC10‐Rnase, resulting in a significant increase of its ribonuclease activity. This reduction and increase in S‐RNase activity by NaTrxh helps to explain why S‐RNase alone could be insufficient for pollen rejection.  相似文献   

2.
Unilateral incompatibility often occurs between self-incompatible (SI) species and their self-compatible (SC) relatives. For example, SI Nicotiana alata rejects pollen from SC N. plumbaginifolia, but the reciprocal pollination is compatible. This interspecific pollen rejection system closely resembles intraspecific S-allele-specific pollen rejection. However, the two systems differ in degree of specificity. In SI, rejection is S-allele-specific, meaning that only a single S-RNase causes rejection of pollen with a specific S genotype. Rejection of N. plumbaginifolia pollen is less specific, occurring in response to almost any S-RNase. Here, we have tested whether a non-S-RNase can cause rejection of N. plumbaginifolia pollen. The Escherichia coli rna gene encoding RNaseI was engineered for expression in transgenic (N. plumbaginifolia × SC N. alata) hybrids. Expression levels and pollination behavior of hybrids expressing E. coli RNaseI were compared to controls expressing SA2-RNase from N. alata. Immunoblot analysis and RNase activity assays showed that RNaseI and SA2-RNase were expressed at comparable levels. However, expression of SA2-RNase caused rejection of N. plumbaginifolia pollen, whereas expression of RNaseI did not. Thus, in this system, RNase activity alone is not sufficient for rejection of N. plumbaginifolia pollen. The results suggest that S-RNases may be specially adapted to function in pollen rejection.  相似文献   

3.
4.
Extracellular, stylar RNases (S-RNases) are produced by self-incompatible, solanaceous plants, such asNicotiana alata, and are thought to be involved in selfpollen rejection by acting selectively as toxins to selfpollen. In this study, the toxicity of RNases to other plant cells was tested by culturing cells ofN. alata andN. plumbaginifolia in the presence ofS-RNases fromN. alata. The growth of cultured cells ofN. plumbaginifolia was inhibited by theS-RNases, but viability was not affected. Growth of cultured cells of oneN. alata selfincompatibility genotype was inhibited by twoS-RNases, indicating that inhibition was not allele specific. Comparisons with the effects of inactivated RNase and other proteins, suggest that the inhibition of growth byS 2-RNase was partly, but not wholly, due to RNase activity. Heat-denaturedS 2-RNase was a very effective inhibitor of cell growth, but this inhibitory activity may be a cell surface phenomenon.  相似文献   

5.
In natural populations where interfertile species coexist, conspecific and heterospecific pollen can be delivered to the stigmas. Post-pollination mechanisms might determine the seed siring success of different pollen donors within species as well as the chances for hybridization between species. Nicotiana longiflora and N. plumbaginifolia occur in sympatry in Northwest Argentina, where they have overlapping flowering seasons and share floral visitors. We explored (1) pollen tube growth rates for outcross versus self pollen in single-donor pollinations; (2) siring success of self versus outcross pollen donors in competitive pollinations, and (3) possibilities for hybridization by performing two- (outcross conspecific vs. heterospecific) and three-pollen donor (self vs. outcross vs. heterospecific) crosses. In N. longiflora, both pollen tube growth rate and siring success favored outcross pollen over self pollen and strong rejection of heterospecific pollen. In N. plumbaginifolia, pollen tube growth rate was similar for self and outcross pollen, self pollen sired similar numbers of offspring than outcross pollen and heterospecific pollen sired roughly the same number of progeny than self pollen. Results suggest that in natural sympatric populations, interspecific crosses would likely lead to unidirectional hybridization with N. plumbaginifolia as the seed parent.  相似文献   

6.
Summary Mesophyll protoplasts of a kanamycin-resistant, nopaline-positive Nicotiana plumbaginifolia seed line were inactivated by -irradiation and electrically fused with unirradiated mesophyll protoplasts of N. tabacum. Hybrids were selected on kanamycin and regenerated. Genetic material from N. plumbaginifolia was detected in these plants by the following criteria: (1) morphology, (2) esterase isozyme profiles, and (3) the presence of nopaline in leaf extracts. All of the plants regenerated were morphologically more similar to N. tabacum than to N. plumbaginifolia, and many were indistinguishable from N. tabacum. It was found that 37 plants displayed one or two esterases characteristic of N. plumbaginifolia in addition to a full set of esterases from N. tabacum. Based on their esterases, we have classified these plants as somatic hybrids. However, irradiation has clearly reduced the amount of N. plumbaginifolia genetic material that they retain; 24 plants were found that had only N. tabacum esterases but that produced nopaline and were kanamycin resistant. Genomic DNA from several of these plants was probed by Southern blotting for the presence of the authentic neomycin phosphotransferase gene (kanamycin-resistance gene) — all were found to contain the gene. These plants were classified as asymmetric hybrids. Finally, 25 plants were regenerated that were kanamycin sensitive, negative for nopaline, and contained only N. tabacum esterases. All of the regenerated plants, including this final category, were male sterile. As transferring the N. plumbaginifolia cytoplasm to an N. tabacum nuclear background results in an alloplasmic form of male sterility, all of the plants regenerated in this study appear to be cybrids irrespective of their nuclear constitution. Chromosome analysis of the asymmetric hybrids showed that most of them contained one more chromosome than is normal for N. tabacum. The somatic hybrids examined all had several additional chromosomes. Although male sterile, the asymmetric hybrids were female fertile to varying degrees and were successfully backcrossed with N. tabacum. Analysis of the resultant F1 progeny indicated that the kanamycin-resistance gene from N. plumbaginifolia is partially unstable during meiosis, as would be expected for factors inherited on an unpaired chromosome.Abbreviations Km r kanamycin resistant - Km s kamacysin sensitive - Nop + nopaline positive - Nop nopaline negative  相似文献   

7.
Nicotiana tabacum and Nicotiana alata plants were transformed with genomic clones of two S-RNase alleles from N. alata. Neither the S 2 clone, with 1.6 kb of 5 sequence, nor the S 6 clone, with 2.8 kb of 5 sequence, were expressed at detectable levels in transgenic N. tabacum plants. In N. alata, expression of the S 2 clone was not detected, however the S 6 clone was expressed (at low levels) in three out of four transgenic plants. An S 6-promoter-GUS fusion gene was also expressed in transgenic N. alata but not N. tabacum. Although endogenous S-RNase genes are expressed exclusively in floral pistils, the GUS fusion was expressed in both styles and leaves.  相似文献   

8.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

9.
Medgyesy et al. (1986, Mol. Gen. Genet. 204, 195–198) have described in Nicotiana plumbaginifolia and in an interspecific cross involving N. plumbaginifolia and N. tabacum a procedure for selecting cell lines derived from seedlings carrying paternal chloroplasts by taking advantage of a plastid-encoded mutation which confers resistance to streptomycin. We have extended their demonstration of occasional transmission of chloroplasts through pollen to the case of an intraspecific cross in N. tabacum. The line used as maternal parent, ITB19(sua), displayed a cytoplasmic male sterility due to the presence of a cytoplasm originating from N. suaveolens. The line used as paternal parent, SR1, was fertile and possessed mutant chloroplasts conferring resistance to streptomycin. From cell lines derived from 204 seedlings, three were regenerated into streptomycin-resistant buds. The plants derived from these three clones were male-sterile. Their progeny, after crossing with a wild type tobacco line, XHFD8, was resistant to streptomycin. Tests of resistance of the seedlings to tentoxin and restriction analyses of the chloroplast DNA indicated that two clones still had the maternal chloroplasts and were thus probably new streptomycin-resistant mutants, whereas the third one had acquired the chloroplasts of the paternal parent, but had retained the mitochondria of the maternal parent.Abbreviations cp-DNA chloroplast DNA - mt-DNA mitochondrial DNA - Np Nicotiana plumbaginifolia - Nt Nicotiana tabacum  相似文献   

10.
Summary A species-specific, dispersed repetitive DNA sequence was cloned from Nicotiana plumbaginifolia and used in dot blots and in situ hybridizations to analyze asymmetric somatic hybrids of N. tabacum(+)kanamycin-resistant N. plumbaginifolia. Dot blot hybridization data, using the cloned, species-specific repetitive DNA as a probe, showed that some of the hybrids contain only 1%–5% N. plumbaginifolia DNA, whereas others contain 15%–25%. In situ hybridization of the probe to chromosome spreads showed that the extremely asymmetric hybrids retain a single N. plumbaginifolia chromosome; the hybrids with higher dot blot values were found to have 8 to 12 N. plumbaginifolia chromosomes and chromosome fragments. In situ hybridization also revealed translocations between N. plumbaginifolia and N. tabacum chromosomes in 3 of 8 hybrids studied. RFLP analysis using a 5S gene probe showed the presence of N. plumbaginifolia-specific 5S banding patterns in most hybrids examined, including those that retain only a single N. plumbaginifolia chromosome.  相似文献   

11.
The class III pistil-specific extensin-like proteins (PELPIII) of Nicotiana tabacum accumulate in the intercellular matrix (IM) of the style transmitting tissue (TT). After pollination, the 110–140 kDa PELPIII is translocated from the IM into the pollen tube walls. PELPIII-like sequences have been found in several solanaceous species. These sequences are expressed in mature non-pollinated styles at both RNA and protein level. Of the genus Nicotiana, the species N. alata, N. x sanderae and N. sylvestris (section Alatae), and N. tomentosiformis and N. otophora (section Tomentosae) showed an expression level of PELPIII homologues similar to that in mature styles of N. tabacum. PELPIII genes were absent in the most ancient species studied, namely N. trigonophylla (section Trigonophyllae). To study the species dependence of the translocation of PELPIII into the pollen tube wall in tobacco, interspecific pollinations on N. tabacum pistils were carried out with pollen from the incongruous species N. rustica, N. trigonophylla and Petunia hybrida, where PELPIII homologues are absent in the style. Immunocytological tests showed that the N. tabacum PELPIII is translocated into the pollen tube walls of all three species. Thus, the pollen tube walls of these species do not form a barrier for IM compounds such as the 110–140 kDa PELPIII and the absence of any possible effect of PELPIII on pollen tube growth cannot be due to failure of PELPIII transport through the wall. The importance of these findings is discussed with respect to the evolutionary origin of PELPIII, the pollen pistil interaction, the function of style TT-specific proteins and the physical properties of pollen tube walls.  相似文献   

12.
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

13.
Moav , Rom (Hebrew U., Jerusalem), and D. R. Cameron . Genetic instability in Nicotiana hybrids. I. The expression of instability in N. tabacum × N. plumbaginifolia. Amer. Jour. Bot. 47(2): 87—93. 1960.—N. tabacum (n = 24) and N. plumbaginifolia (n=10) are distantly related species both from morphological and cytological points of view. Hybrids of these species with various genome dosages have exhibited somatic variegation when plumbaginifolia dominant characters were superimposed on an appropriate tabacum genetic background. Five loci were studied in this respect: Wh and Tg—for flower coloration; Ws—for chlorophyll production; Kl—for pollen abortion and Bs—for black shank resistance. All 5 were found to be unstable. Backcross progenies of the sesquidiploid hybrid (tbc-tbc-pbg) to tabacum showed a marked increase in intensity of variegation. This has been attributed to the breaking up of the plumbaginifolia genome into individual chromosomes. The evidence indicates that variegation was due to somatic chromosomal aberrations which probably characterized all the plumbaginifolia chromosomes. An hypothesis regarding the heterogeneity of F1 hybrids of distantly related homozygous species is outlined and the occurrence of instability due to hybridization in other Nicotiana hybrids is discussed.  相似文献   

14.
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

15.
16.
Water and osmotic potentials were measured in young and mature styles of selfcompatible (SC) and selfincompatible (SI) species ofSolanaceae. For mature flowers, the stylar water and osmotic potentials were considerably lower in SI speciesNicotiana alata andPetunia hybrida than in SC speciesN. sylvestris andN. tabacum. Stylar water content (in % fresh mass) was also significantly lower in SI species (N. alata, P. hybrida, diploid clones of potato) than in SC species (N. acuminata, N. glauca, N. paniculata, N. sylvestris, N. tabacum). For flower buds younger than 2 d before anthesis, no differences in stylar water potential betweenN. alata (SI) andN. tabacum (SC) were observed. During further flower bud development the stylar water potential inN. alata decreased more expressively than inN. tabacum. Pollen culture in media with various concentrations of sucrose or polyethylene glycol revealed that optimal water potential for pollen tube growth was lower inN. alata than inN. tabacum. The differences were similar as for differences in stylar water potential. The results are considered in relation to possible involvement of stylar water potential in unilateral interspecific incompatibility inSolanaceae.  相似文献   

17.
Summary We report here on the obtainment of interspecific somatic, asymmetric, and highly asymmetric nuclear hybrids via protoplast fusion. Asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from a nitrate reductase-deficient cofactor mutant of N. plumbaginifolia with irradiated (100 krad) kanamycin resistant leaf protoplasts of a haploid N. tabacum. Selection for nitrate reductase (NR) and/or kanamycin (Km) resistance resulted in the production of three groups of plants (NR+, NR+, KmR, and NR-KmR). Cytological analysis of some hybrid regenerants showed the presence of numerous tobacco chromosomes and chromosome fragments, besides a polyploid N. plumbaginifolia genome (tetra or hexaploid). All the regenerants tested were male sterile but some of them could be backcrossed to the recipient partner. In a second experiment, somatic and highly asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from the universal hybridizer of N. plumbaginifolia with suspension protoplasts of a tumor line of N. tabacum. Selection resulted in two types of colonies: nonregenerating hybrid calli turned out to be true somatic hybrids, while cytological analysis of regenerants obtained on morphogenic calli did not show any presence of donor-specific chromosomes. Forty percent of the hybrid regenerants were completely fertile, while the others could only be backcrossed to the recipient N. plumbaginifolia. Since the gene we selected for is not yet cloned, we were not able to demonstrate the transfer of genetic material at the molecular level. However, since no reversion frequency for the nitrate reductase mutant is known, and due to a detailed cytological knowledge of both fusion partners, we feel confident in speculating that intergenomic recombination between N. plumbaginifolia and N. tabacum has occurred.  相似文献   

18.
Summary Electrically-induced protoplast fusion has been used to produce somatic hybrids between Nicotiana plumbaginifolia and Nicotiana tabacum. Following fusion of suspension culture protoplasts (N. plumbaginifolia) with mesophyll protoplasts (N. tabacum) heterokaryons were identified visually and their development was followed in culture. Because electrical fusion is a microtechnique, procedures were developed for culturing the heterokaryons in small numbers and at low density. The fusion and culture procedures described are rapid, uncomplicated and repeatable. Good cell viabilities indicate that the fusion procedure is not cytotoxic. Fused material was cultured 1–2 days at high density in modified K3 medium (Nagy and Maliga 1976). The heterokaryons were isolated manually and grown, at low density in conditioned media. Calli have been regenerated. Esterase isozyme patterns confirm the hybrid character of calli and clonally-derived plantlets recovered from these fusions.  相似文献   

19.
To understand the expression pattern of theS RNase gene in the floral tissues associated with self-incompatibility (SI), promoter region of S11 RNase gene was serially deleted and fused GUS. Five chimeric constructs containing a deleted promoter region of the S11 RNase gene were constructed, and introduced intoNicotiana tabacum using Agrobacterium-mediated transformation. Northern blot analysis revealed that the GUS gene was expressed in the style, anther, and developing pollen of all stages in each transgenic tobacco plant The developing pollen expressed the same amount of GUS mRNA in all stages in transgenic tobacco plants. In addition, histochemical analysis showed GUS gene expression in vascular bundle, endothecium, stomium, and tapetum cells during pollen development in transgenic plants. From these results, it is speculated that SI ofLycopersicon peruvianum may occur through the interaction ofS RNase expressed in both style and pollen tissues.  相似文献   

20.
The expression of a bacterial cytokinin biosynthesis gene (PI-II-ipt) in Nicotiana plumbaginifolia Viviani plants has been correlated with enhanced resistance to Manduca sexta and Myzus persicae. We expressed the PI-II-ipt gene in N. tabacum and Lycopersicon esculentum and observed similar antifeedent effects with the transgenic tobacco but not tomato. A 30 to 50 % reduction in larval weight gain was observed with some of the tomato plants but these results could not be repeated consistently. Leaf surface extracts from transgenic N. plumbaginifolia leaves killed 100 % of M. sexta second instars at concentrations of 0.05 % (w/v) whereas the N. tabacum extracts were at least 20 times less active. Extract suspensions were stable for up to 2 days at ambient temperatures below 42 °C and for at least 3 months at 4 °C when stored in the dark. HPLC analysis of the N. plumbaginifolia extracts yielded an active fraction that reduced hatching of M. sexta eggs by 30 % and killed first, second and third instars within 24, 48 and 72 hours of exposure, respectively. The activity appears to be associated with oxygen-containing aliphatic compounds, possibly diterpenes, as analyzed by TLC, UV absorption and fragmentation with EIMS. Based on the partial characterization of this activity, the production, secretion or accumulation of secondary metabolites in leaves of cytokinin producing PI-II-ipt N. plumbagini-folia plants appears to be responsible for the observed insect resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号